

Lecture Notes in Artificial Intelligence 4118
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Zoran Despotovic Sam Joseph
Claudio Sartori (Eds.)

Agents
and Peer-to-Peer
Computing

4th International Workshop, AP2PC 2005
Utrecht, The Netherlands, July 25, 2005
Revised Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Zoran Despotovic
EPFL Lausanne
School of Computer and Communication Sciences
1015 Lausanne, Switzerland
E-mail: zoran.despotovic@epfl.ch

Sam Joseph
University of Hawaii
Dept. of Information and Computer Science
1680 East-West Road, POST 309, Honolulu, HI 96822, USA
E-mail: srjoseph@hawaii.edu

Claudio Sartori
University of Bologna
Department of Electronics
Computer Science and Systems
Viale Risorgimento, 2, 40136 Bologna, Italy
E-mail: claudio.sartori@unibo.it

Library of Congress Control Number: 2006938336

CR Subject Classification (1998): I.2.11, I.2, C.2.4, C.2, H.4, H.3, K.4.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-49025-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-49025-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11925941 06/3142 5 4 3 2 1 0

Preface

Peer-to-peer (P2P) computing has attracted enormous media attention, initially
spurred by the popularity of file sharing systems such as Napster, Gnutella, and
Morpheus. More recently, systems like BitTorrent and eDonkey have continued to
sustain that attention. New techniques such as distributed hash-tables (DHTs),
semantic routing, and Plaxton Meshes are being combined with traditional con-
cepts such as Hypercubes, Trust Metrics and caching techniques to pool to-
gether the untapped computing power at the “edges” of the Internet. These new
techniques and possibilities have generated a lot of interest in many industrial
organizations, and has resulted in the creation of a P2P working group on stan-
dardization in this area (http://www.irtf.org/charter?gtype=rg&group=p2prg).

In P2P computing, peers and services forego central coordination and dy-
namically organize themselves to support knowledge sharing and collaboration,
in both cooperative and non-cooperative environments. The success of P2P sys-
tems strongly depends on a number of factors. First, the ability to ensure equi-
table distribution of content and services. Economic and business models which
rely on incentive mechanisms to supply contributions to the system are being
developed, along with methods for controlling the “free riding” issue. Second,
the ability to enforce provision of trusted services. Reputation-based P2P trust
management models are becoming a focus of the research community as a vi-
able solution. The trust models must balance both constraints imposed by the
environment (e.g., scalability) and the unique properties of trust as a social and
psychological phenomenon. Recently, we are also witnessing a move of the P2P
paradigm to embrace mobile computing in an attempt to achieve even higher
ubiquitousness. The possibility of services related to physical location and the
relation with agents in physical proximity could introduce new opportunities and
also new technical challenges.

Although researchers working on distributed computing, multi-agent systems,
databases and networks have been using similar concepts for a long time, it is
only fairly recently that papers motivated by the current P2P paradigm have
started appearing in high-quality conferences and workshops. Research in agent
systems in particular appears to be most relevant because, since their inception,
multi-agent systems have always been thought of as collections of peers.

The multi-agent paradigm can thus be superimposed on the P2P architecture,
where agents embody the description of the task environments, the decision-
support capabilities, the collective behavior, and the interaction protocols of
each peer. The emphasis in this context on decentralization, user autonomy, dy-
namic growth and other advantages of P2P also leads to significant potential
problems. Most prominent among these problems are coordination—the ability
of an agent to make decisions on its own actions in the context of activities
of other agents—and scalability—the value of the P2P systems lies in how well

VI Preface

they scale along several dimensions, including complexity, heterogeneity of peers,
robustness, traffic redistribution, and so forth. It is important to scale up coor-
dination strategies along multiple dimensions to enhance their tractability and
viability, and thereby to widen potential application domains. These two prob-
lems are common to many large-scale applications. Without coordination, agents
may be wasting their efforts, squandering resources and failing to achieve their
objectives in situations requiring collective effort.

This workshop brought together researchers working on agent systems and
P2P computing with the intention of strengthening this connection. Researchers
from other related areas such as distributed systems, networks and database
systems were also welcome (and, in our opinion, have a lot to contribute). We
seek high-quality and original contributions on the general theme of “Agents
and P2P Computing.” The following is a non-exhaustive list of topics of special
interest:

– Intelligent agent techniques for P2P computing
– P2P computing techniques for multi-agent systems
– The Semantic Web and semantic coordination mechanisms for P2P systems
– Scalability, coordination, robustness and adaptability in P2P systems
– Self-organization and emergent behavior in P2P systems
– E-commerce and P2P computing
– Participation and contract incentive mechanisms in P2P systems
– Computational models of trust and reputation
– Community of interest building and regulation, and behavioral norms
– Intellectual property rights and legal issues in P2P systems
– P2P architectures
– Scalable data structures for P2P systems
– Services in P2P systems (service definition languages, service discovery, fil-

tering and composition etc.)
– Knowledge discovery and P2P data mining agents
– P2P-oriented information systems
– Information ecosystems and P2P systems
– Security considerations in P2P networks
– Ad-hoc networks and pervasive computing based on P2P architectures and

wireless communication devices
– Grid computing solutions based on agents and P2P paradigms
– Legal issues in P2P networks

The workshop series emphasizes discussions about methodologies, models, algo-
rithms and technologies, strengthening the connection between agents and P2P
computing. These objectives are accomplished by bringing together researchers
and contributions from these two disciplines but also from more traditional areas
such as distributed systems, networks, and databases.

This volume is the post-proceedings of AP2PC 2005, the Fourth International
Workshop on Agents and P2P Computing,1 held in Utrecht, Netherlands on

1 http://p2p.ingce.unibo.it/

Preface VII

July 25, 2005 in the context of the Fourth International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS 2005).

This volume brings together papers presented at AP2PC 2005, fully revised
to incorporate reviewers’ comments and discussions at the workshop. The volume
is organized according to the following sessions held at the workshop:

– P2P Networks and Search Performance
– Emergent Communities and Social Behaviors
– Semantic Integration
– Mobile P2P systems
– Adaptive Systems
– Agent-Based Resource Discovery
– Trust and Reputation

We would like to thank the invited speaker Hector Anthony Rowstron, Se-
nior Researcher from Microsoft Research in Cambridge UK, for his talk entitled
“Removing the Overlay from an Underlay!”

We would also like to thank Omer Rana, from the Department of Computer
Science at Cardiff University, UK, for chairing the panel with the theme “To
Trust or Not to Trust.” We express our deepest appreciation to the workshop par-
ticipants (more than 40) for their lively discussions, in particular for the invited
panelists: Simon Miles, Maria Gini, Martin Purvis and Cristiano Castelfranchi.
Many thanks also to Raj Dasgupta and Karen Fullam for chairing sessions in
the workshop.

After distributing the call for papers for the workshop, we received 27 papers.
All submissions were reviewed for scope and quality, and 13 were accepted as full
papers. We would like to thank the authors for their submissions and the mem-
bers of the Program Committee for reviewing the papers under time pressure
and for their support of the workshop. Finally, we would like to acknowledge the
Steering Committee for its guidance and encouragement.

This workshop followed the successful third edition, which was held in con-
junction with AAMAS in New York City in 2004. In recognition of the inter-
disciplinary nature of P2P computing, a sister event called the International
Workshop on Databases, Information Systems, and P2P Computing2 was held
in Trondheim, Norway in August 2005 in conjunction with the International
Conference on Very Large Data Bases (VLDB).

September 2005 Zoran Despotovic
Sam Joseph

Claudio Sartori

2 http://dbisp2p.ingce.unibo.it/

Organization

Executive Committee

Organizers

Program Co-chairs Zoran Despotovic
School of Computer and Communications Sciences,
Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
E-mail: zoran.despotovic@epfl.ch

Sam Joseph
Dept. of Information and Computer Science,
University of Hawaii
1680 East-West Road, POST 309, Honolulu, HI 96822,

USA
E-mail: srjoseph@hawaii.edu

Claudio Sartori
Dept. of Electronics, Computer Science and Systems,
University of Bologna
Viale Risorgimento, 2 - 40136 Bologna, Italy
E-mail: claudio.sartori@unibo.it

Panel Chair Omer Rana
School of Computer Science, Cardiff University
Queen’s Buildings, Newport Road,
Cardiff CF24 3AA, UK

Steering Committee

Karl Aberer, EPFL, Lausanne, Switzerland

Sonia Bergamaschi, Dept. of Science Engineering,
University of Modena and Reggio-Emilia, Italy

Manolis Koubarakis, Dept. of Electronic and Computer Engineering,
Technical University of Crete, Greece

Paul Marrow, Intelligent Systems Laboratory,
BTexact Technologies, UK

X Organization

Gianluca Moro, Dept. of Electronics, Computer Science and Systems, Univ.
of Bologna, Cesena, Italy

Aris M. Ouksel, Dept. of Information and Decision Sciences,
University of Illinois at Chicago, USA

Claudio Sartori,
IEIIT-BO-CNR, University of Bologna, Italy

Munindar P. Singh,
Dept. of Computer Science, North Carolina State University, USA

Program Committee

Karl Aberer, EPFL, Lausanne, Switzerland
Alessandro Agostini, ITC-IRST, Trento, Italy
Djamal Benslimane, Universite Claude Bernard, France
Sonia Bergamaschi, University of Modena and Reggio-Emilia, Italy
M. Brian Blake, Georgetown University, USA
Rajkumar Buyya, University of Melbourne, Australia
Paolo Ciancarini, University of Bologna, Italy
Costas Courcoubetis, Athens University of Economics and Business, Greece
Yogesh Deshpande, University of Western Sydney, Australia
Asuman Dogac, Middle East Technical University, Turkey
Boi V. Faltings, EPFL, Lausanne, Switzerland
Maria Gini, University of Minnesota, USA
Dina Q. Goldin, University of Connecticut, USA
Chihab Hanachi, University of Toulouse, France
Willem Jonker, Philips, Netherlands
Mark Klein, Massachusetts Institute of Technology, USA
Matthias Klusch, DFKI, Saarbrücken, Germany
Tan Kian Lee, National University of Singapore, Singapore
Zakaria Maamar, Zayed University, UAE
Wolfgang Mayer, University of South Australia, Australia
Dejan Milojicic, Hewlett Packard Labs, USA
Alberto Montresor, University of Bologna, Italy
Luc Moreau, University of Southampton, UK
Jean-Henry Morin, University of Geneve, Switzerland
Andrea Omicini, University of Bologna, Italy
Maria Orlowska, University of Queensland, Australia
Aris. M. Ouksel, University of Illinois at Chicago, USA
Mike Papazoglou, Tilburg University, Netherlands
Paolo Petta, Austrian Research Institute for AI, Austria,
Jeremy Pitt, Imperial College, UK
Dimitris Plexousakis, Institute of Computer Science, FORTH, Greece

Organization XI

Martin Purvis, University of Otago, New Zealand
Omer F. Rana, Cardiff University, UK
Douglas S. Reeves, North Carolina State University, USA
Thomas Risse, Fraunhofer IPSI, Darmstadt, Germany
Pierangela Samarati, University of Milan, Italy
Heng Tao SHEN, ITEE, UQ, Australia
Christophe Silbertin-Blanc, University of Toulouse, France
Maarten van Steen, Vrije Universiteit, Netherlands
Katia Sycara, Robotics Institute, Carnegie Mellon University, USA
Peter Triantafillou, Technical University of Crete, Greece
Anand Tripathi, University of Minnesota, USA
Vijay K. Vaishnavi, Georgia State University, USA
Francisco Valverde-Albacete, Universidad Carlos III de Madrid, Spain
Maurizio Vincini, University of Modena and Reggio-Emilia, Italy
Fang Wang, BTexact Technologies, UK
Gerhard Weiss, Technische Universität, München, Germany
Bin Yu, North Carolina State University, USA
Franco Zambonelli, University of Modena and Reggio-Emilia, Italy

Preceding Editions of AP2PC

Here are the references to the preceding editions of AP2PC, including the vol-
umes of revised and invited papers:

– AP2PC 2002 was held in Bologna, Italy, July 15, 2002. The Web site can be
found at http://p2p.ingce.unibo.it/2002/ The proceedings were published by
Springer as LNCS volume no. 2530 and are available online at: http://www.
springerlink.com/content/978-3-540-40538-2/

– AP2PC 2003 was held in Melbourne, Australia, July 14, 2003. The Web
site can be found at http://p2p.ingce.unibo.it/2003/ The proceedings were
published by Springer as LNCS volume no. 2872 and are available online at:
http://www.springerlink.com/content/978-3-540-24053-2/

– AP2PC 2004 was held in New York City, USA, July 19, 2004. The Web
site can be found at http://p2p.ingce.unibo.it/2004/ The proceedings were
published by Springer as LNCS volume no. 3601 and are available online at:
http://www.springerlink.com/content/978-3-540-29755-0/

Table of Contents

Trust and Reputation

Optimizing an Incentives’ Mechanism for Truthful Feedback in Virtual
Communities . 1

Thanasis G. Papaioannou, George D. Stamoulis

A New View on Normativeness in Distributed Reputation Systems:
Beyond Behavioral Beliefs . 16

Philipp Obreiter, Birgitta König-Ries

A Trust Management Scheme in Structured P2P Systems 30
So Young Lee, O-Hoon Kwon, Jong Kim, Sung Je Hong

Incentive-Compatibility in a Distributed Autonomous Currency
System . 44

Kenji Saito, Eiichi Morino, Jun Murai

Handling Free Riders in Peer-to-Peer Systems . 58
Loubna Mekouar, Youssef Iraqi, Raouf Boutaba

P2P Infrastructure

Highly Available DHTs: Keeping Data Consistency After Updates 70
Predrag Knežević, Andreas Wombacher, Thomas Risse

Caching Indices for Efficient Lookup in Structured Overlay Networks 81
Vasilios Darlagiannis, Nicolas Liebau, Oliver Heckmann,
Andreas Mauthe, Ralf Steinmetz

Semantic Infrastructure

A Semantic Marketplace of Negotiating Agents . 94
Theodore Patkos, Dimitris Plexousakis

Semantic Web Service Composition Through a P2P-Based Multi-agent
Environment . 106

Peep Küngas, Mihhail Matskin

XIV Table of Contents

Community and Mobile Applications

A Low-Latency Peer-to-Peer Approach for Massively Multiplayer
Games . 120

Jin Zhou, Li Tang, Kai Li, Hao Wang, Zhizhi Zhou

An Agent-Based Collaborative Framework for Mobile P2P
Applications . 132

Mengqiu Wang, Heiko Wolf, Martin Purvis, Maryam Purvis

ACP2P: Agent-Community-Based Peer-to-Peer Information
Retrieval – An Evaluation . 145

Tsunenori Mine, Akihiro Kogo, Makoto Amamiya

A Peer Ubiquitous Multi-agent Framework for Providing Nomadic
Users with Adapted Information . 159

Angela Carrillo Ramos, Jérôme Gensel, Marlène Villanova-Oliver,
Hervé Martin

Author Index . 173

Optimizing an Incentives’ Mechanism for
Truthful Feedback in Virtual Communities�

Thanasis G. Papaioannou and George D. Stamoulis

Department of Informatics, Athens University of Economics and Business (AUEB)
76 Patision Str., 10434 Athens, Greece

{pathan, gstamoul}@aueb.gr

Abstract. We analyze a mechanism that provides strong incentives for
the submission of truthful feedback in virtual communities where ser-
vices are exchanged on a peer-to-peer basis. Lying peers are punished
with a severity that is exponential to their frequency of lying. We had
first introduced and evaluated experimentally the mechanism in [1]. In
this paper, we develop a Markov-chain model of the mechanism. Based
on this, we prove that, when the mechanism is employed, the system
evolves to a beneficial steady-state operation even in the case of a dy-
namically renewed population. Furthermore, we develop a procedure for
the efficient selection of the parameters of the mechanism for any peer-
to-peer system; this procedure is based on ergodic arguments. Simulation
experiments reveal that the procedure is indeed accurate, as well as ef-
fective regarding the incentives provided to participants for submitting
truthful feedback.

1 Introduction

Virtual communities for the exchange of files, services, knowledge or opinions
possibly on a peer-to-peer basis have already been widely developed. In the ab-
sence of any proper accounting about who is offering value to others in such com-
munities, there is opportunity for free-riding and for malicious actions against
other members. Revelation of hidden information on the quality of the exchanged
good and on the trustworthiness of the community members is necessary. For,
otherwise, such virtual environments may offer low value and eventually col-
lapse. Reputation on the basis of ratings can be a proper means for achiev-
ing accountability. However, reputation mechanisms are vulnerable to false or
strategic voting (rating). For example, a particular peer may benefit by submit-
ting unjustified positive ratings for his friends or his collaborators, and/or by
submitting unfair negative ratings for his competitors. This problem is further
augmented in case of pseudo-spoofing, i.e. use of multiple false identities, which
may arise in virtual environments, especially peer-to-peer systems. In [1], we
proposed a mechanism for providing incentives for credible reporting of feed-
back information in a peer-to-peer system. The mechanism was combined with

� The present work was partly funded by the IST project EuroNGI (IST-2003-507613).

Z. Despotovic, S. Joseph, and C. Sartori (Eds.): AP2PC 2005, LNAI 4118, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 T.G. Papaioannou and G.D. Stamoulis

reputation-based policies that we introduced in [2]. These determine the pairs of
peers that are eligible to transact, in order incentives to peers for offering bet-
ter services to others to be provided as well. According to the mechanism both
transacting peers (rather than just the client) submit ratings on the performance
of their mutual transaction. If these ratings are in disagreement, then both trans-
acting peers are punished, since such an occasion is a sign that one of them is
lying, yet the system cannot tell which one. When under punishment, a peer is
not allowed to transact with others. The severity (i.e. duration) of each peer’s
punishment is determined by his corresponding non-credibility metric; this is
maintained by the mechanism and evolves according to the peer’s record. Simu-
lation experiments in [1] showed clearly that the combination of the mechanism
with reputation-based policies detects and isolates liar peers effectively, while
rendering lying costly even in dynamically evolving peer-to-peer systems. Also,
the efficiency losses induced to sincere peers by the presence of large subsets of
the population of peers that provide their ratings either falsely or according to
various unfair strategies are diminished. As explained in [1], this mechanism can
be implemented in practical cases of peer-to-peer systems.

In this paper, we analytically study the standalone effectiveness of the mech-
anism of [1] (i.e. without being combined with reputation-based policies) in pro-
viding incentives for truthful reporting. We define a Markov-chain model in order
to study the steady-state effect of the credibility mechanism in punishing liar
peers. We also develop an optimization procedure for the determination of the
proper parameters of the credibility mechanism employed to a dynamically re-
newed peer-to-peer system, so as to maximize the effectiveness of the mechanism
in punishing lying and minimize the cost induced to sincere peers by potential
unfair punishments thereof due to the mechanism. This optimization procedure
is based on ergodic arguments. We evaluate our Markovian model and our opti-
mization procedure by simulation experiments that show the accuracy and the
effectiveness of the approach. The results scale for realistic population sizes of
peer-to-peer systems thus making both our mechanism and our approach for
selecting its parameters applicable in practical cases.

There is significant related work in the literature. Dellarocas deals in [3] with
the problem of unfair ratings and discriminatory behavior in on-line trading
communities. Schillo et al. [4] deal separately with behavior and credibility of
other agents using the so-called disclosed prisoners’ dilemma game with part-
ner selection based on own observations. Damiani et al., in a similar approach
[5], extend Gnutella protocol to calculate performance and credibility of other
peers based on a peer’s own experience and on votes from witnesses. A single
trust metric is used for credibility and performance by Yu et al. in [6]. Aberer
et al. [7] present an approach to evaluate trustworthiness (i.e. the combination
of credibility and performance) of peers based on the complaints posed for them
by other peers following transactions. An approach for providing incentives for
truthful reporting of feedback in e-markets has been proposed by Jurca and Falt-
ings in [8]. This approach, similarly to ours, employs disagreement in feedback
messages for discovering potential lying. Detailed comparison of our credibility

Optimizing an Incentives’ Mechanism for Truthful Feedback 3

mechanism with these works has been done in [1]. However, these approaches
(including [1]) mostly resort to simulation for the purpose of evaluation of their
mechanisms. Moreover, they do not deal with large fractions of collaborated liar
peers, as opposed to both [1] and the present work.

The remainder of this paper is organized as follows: in Section 2, we overview
our credibility mechanism. In Section 3, we describe the Markov-chain model of
a peer-to-peer system that employs our credibility mechanism. In Section 4, we
present our procedure for the optimization of the parameters of the credibility
mechanism for a peer-to-peer system. In Section 5, we evaluate our Markov-
chain model and our optimization procedure by simulation experiments. Finally,
in Section 6, we provide some concluding remarks.

2 The Credibility Mechanism

Consider a peer-to-peer system for exchanging services that employs a dis-
tributed reputation system for performance. Time is assumed to be slotted. For
simplicity, we assume that the minimum time interval between two successive
service requests by the same peer equals one time slot. Following a transaction,
the client peer sends feedback rating his offered performance. For example, he
may rate the transaction as ”successful” (i.e. high offered performance) or as
”unsuccessful” (i.e. low offered performance). The feedback messages are useful
only if their content is true. Unfortunately, peers actually have the incentive
of strategic rating of others’ performance, since they can thus hide their poor
performance, improve their reputation, and possibly take advantage of others.
Thus, a proper mechanism should make lying costly or at least unprofitable.
”Punishing liars” is a known recipe [9], [10], but two questions arise: How can
lying peers be discovered? How can they be punished in a peer-to-peer system,
where there is no central control?

Under our approach peers submit ratings’ feedback according to the follow-
ing rules: i) after a transaction, both peers involved have to send one feedback
message each, and ii) besides rating (i.e. voting) the transaction as successful or
not, each feedback message also contains a quantifiable performance metric, e.g.
the number of transferred bytes of useful content. We assume that the observed
performance is with high probability the same with that actually offered. (The
opposite may only occur due to unexpected events during a transaction like
network congestion etc.) Thus, if feedback messages for a transaction disagree
(either in their performance metric or in their vote), then, with high probability,
at least one of the transacted peers is lying and has to be somehow punished,
in order for the right incentives to be provided. However, the system cannot tell
which of the peers does lie, and consequently whom to believe and whom to pun-
ish. Thus, according to our approach, both peers are punished in this case. This
idea was initially introduced in [9]. However, by simply applying it, a sincere
peer is often punished unfairly.

Therefore, we need a complete mechanism specifying how to punish peers in
such an uncontrolled system and how to limit potential unfairness. To this end,

4 T.G. Papaioannou and G.D. Stamoulis

we introduce for each peer: i) the non-credibility metric ncr, which corresponds
to reputation for non-credibility, and ii) a binary punishment state variable,
declaring whether the peer is ”under punishment” (if the variable is ”true”) or
not (if the variable is ”false”). For each peer, both ncr and punishment state are
public information, and they are appropriately stored so that they are available
to other peers. (See [1] for a discussion on practical implementation.) Upon
entering the peer-to-peer system, each peer is assigned a positive non-credibility
value ncr0, while he is not under punishment. (Note that the lower the value of
ncr the better.) This choice of ncr0 limits the incentive for name changes after a
disagreement. The flowchart of the credibility mechanism is depicted in Figure 1.
In particular, after a transaction between two not punished peers i, j their
feedback messages fi, fj are sent as input to the mechanism: Upon disagreement
(i.e. if fi �= fj), the non-credibility values of the transacted peers are both
increased by x while both get punished. The duration of a peer’s punishment
equals bncr, i.e. is exponential in his non-credibility, with a base b > 1. Upon
agreement (i.e. if fi = fj), the non-credibility values of the transacted peers are
decreased (i.e. improved) by d, where 0 < d ≤ x, without ever dropping below 0.
In the rest of the paper, without loss of generality, we take x = 1. The common
feedback is forwarded to the system computing reputation for performance.

Decrease of non-credibility in cases of agreement serves as a rehabilitation
mechanism. This is crucial for the efficient operation of the credibility mecha-
nism, because, as already mentioned, upon disagreement in reports, most proba-
bly one peer is unfairly punished. The value of d determines the speed of restor-
ing a non-credible reporting behavior. We employ additive increase/decrease of
the non-credibility values for simplicity. Other approaches such as additive in-
crease/multiplicative decrease are also possible.

input

feedback

messages

fi, fj

ncri

ncrj

start fi = fj

?

False

Transaction

Fig. 1. The credibility mechanism

Punishing peers is not an easy task to employ in the absence of any control
mechanism, particularly if peers have full control over their part of peer-to-peer
middleware. In our mechanism, a punishment amounts to loss of value offered

Optimizing an Incentives’ Mechanism for Truthful Feedback 5

by other peers. That is, a peer under punishment does not transact with others
during his punishment period, while his ratings for such transactions are not
taken into account. The latter measure provides incentives for peers to abide
with the former one! Indeed, first, note that sincere peers under punishment
are not expected to be willing to offer services as they would be subject to
strategic voting without being able to disagree. On the other hand, liar pun-
ished peers collaborated with other liar peers that strategically vote them (i.e.
always positively) can raise their reputation anyway, thus having no incentives
to perform well during their punishment. Thus, no peer has any incentives to
ask for services from a punished peer except for strategic voting. Moreover, no
peer has any incentive to perform well when offering services to a punished peer,
because the corresponding feedback is not taken into account. Therefore, it is
beneficial for the system to prohibit transaction with punished peers by rule. To
this end, if a peer transacts with a punished one, then both of the transacting
peers are punished as if they were involved in a new disagreement. Thus, the
non-credibility value of a peer remains unchanged during his punishment period
unless he transacts with other peers; in such a case it is further increased.

Peers should have the incentive to submit feedback, despite the risk of dis-
agreement and subsequent punishment. Indeed, after a transaction that failed
peers may not be willing to report the failure at all. Thus, to provide peers with
the incentive to submit their feedback, our mechanism punishes both peers in-
volved in a transaction if only one of them submits feedback. This also prevents
unilateral submission of feedback messages for non-existing transactions. Note
also that, since the proposed mechanism improves the long-term efficiency of the
sincere peers, only liar peers are expected to have incentives to avoid submitting
feedback. Yet applying the reasoning of [11] to our case, we expect that under
certain circumstances, the existence of our mechanism will lead liar peers to give
up their strategic behavior since it is not beneficial to them.

3 The Markovian Model Approximating the Mechanism

In this section, we analytically study the effectiveness of the proposed mechanism
in equilibrium for providing incentives to peers for truthful reporting. For this
purpose, we define a discrete-time Markov-chain model of a peer-to-peer system
where the credibility mechanism is employed. Then, we derive the steady-state
distribution of the punishment state of sincere and liar peers of the modeled
peer-to-peer system. Modeling of time is different than that introduced in Sec-
tion 2. In particular, for the purpose of specifying and analyzing this Markov
chain, we define as time step of our discrete-time model the interval between two
successive service requests. We assume that in this interval at most one trans-
action takes place. Thus, transition from one state to another can only happen
after a transaction between two peers. This is very convenient for analyzing
the Markov-chain model and studying the performance of the original system
defined in Section 2. Performance measures can be easily translated from the
new ”transaction units” to actual time slots; see Section 4. Note that at the

6 T.G. Papaioannou and G.D. Stamoulis

beginning of each time step, a peer is randomly selected to be the client of the
only transaction that takes place in this step.

The total populations of sincere and liar peers in the peer-to-peer system
modelled as a Markov chain are S0 and L0 respectively. Consider that a state is
a snapshot of the system where state variables are the number of not punished
sincere peers s, the number of not punished liar peers l, and the number of
peers under punishment k. Clearly, this Markov chain has (S0 + 1)(L0 + 1)
different states. Observe also that state variable k can be computed by the
formula k = S0 − s + L0 − l, but k is used for readability reasons. Let q be
the probability that a requested service is found at a certain peer and r to be
the probability that a peer asks for a service. Recall that credibility values and
punishment state are public information, and that not punished peers are not
allowed to transact with punished peers. The probability that a selected client
peer finds a requested service is given by:

y = r(1 − (1 − q)l+s−1) (1)

A client sincere peer is punished if he finds his service at a liar peer. The prob-
ability PS of this event is given by:

PS =
l

s + l − 1
y (2)

A client liar peer is punished if he interacts with a sincere peer plus or with
another liar peer that is not collaborated with. We assume that the probability
of each given pair of liars to be collaborated with each other equals , which is
fixed. Thus, the probability of punishment for a client liar peer is given by the
formula below:

PL =
s

s + l − 1
y +

l − 1
s + l − 1

ya (3)

If no liars are collaborated with each other, then a = 1, while for all liars being
collaborated with each other a = 0. In the analysis that follows we study the
case where all liar peers are collaborated with each other, which is the hardest
one for the mechanism to deal with.

Recall that at the beginning of each time step, a peer is randomly selected
to be the client of the only transaction to take place. The probability PT that
the two peers of a transaction are punished, i.e. they disagree in their feedback
messages is given by:

PT =
s

s + l
PS +

l

s + l
PL (4)

For modeling purposes, we assume that during a time step, a sincere (resp.
liar) peer that is under punishment can be ”rehabilitated”, i.e. stop being under
punishment in the next step, with probability PRHS (resp. PRHL). Thus, when
there are k = S0 − s + L0 − l peers under punishment in the current state, the
average number of rehabilitated peers in the next state is (S0 − s)PRHS +(L0 −
l)PRHL. Next, we relate the Markovian model with the original mechanism of
Section 2.

Optimizing an Incentives’ Mechanism for Truthful Feedback 7

Suppose that the peer-to-peer system is currently in state (s, l, k), i.e. there
are s not punished sincere and l not punished liar peers, while k peers are
under punishment. Then, in the next time step (i.e. after a transaction), the
system may move to various states with the transition probabilities given in the
Table 1. Term A corresponds to the transition arising when the transacting peer
are punished, while term B corresponds to the transition arising when they are
not punished. Both terms also involve the probability of rehabilitation of the
number of liar and sincere peers necessary for the transaction to happen.

Table 1. Formula for transition probability from current state (s, l, k) to another

Transition Probability

Probability[(s, l, k) → (s − 1 + i, l − 1 + j, k + 2 − i − j) = A + B, where

A =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

PT

(
S0 − s

i

)
PRHS

i(1 − PRHS)S0−s−i

(
L0 − l

j

)
PRHL

j ·

(1 − PRHL)L0−l−j , for 0 ≤ i ≤ S0 − s and 0 ≤ j ≤ L0 − l

0, otherwise

B =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − PT)
(

S0 − s
i − 1

)
PRHS

i−1(1 − PRHS)S0−s−i+1
(

L0 − l
j − 1

)
PRHL

j−1·

(1 − PRHL)L0−l−j+1, for 1 ≤ i ≤ S0 − s + 1 and 1 ≤ j ≤ L0 − l + 1

0, otherwise

Under the Markovian model, the distribution of the punishment period is ge-
ometric; i.e. the duration of the punishment period is independent of the peer’s
past history. Clearly, this is only an approximation of the behavior of our credi-
bility mechanism as described in Section 2, which is very complicated to model
accurately and has a huge state-space. Indeed, recall that a peer upon disagree-
ment is punished for a time period that is exponential to his non-credibility value,
which should be maintained as part of the state for all peers! However, as the
results of Section 5 reveal, this approximation is indicative of the performance of
the actual mechanism provided that rehabilitation probabilities are successfully
selected. Indeed, let us denote as c the period of conviction for a peer with a
certain punishment record. Then, for a geometric-distribution approximation of
this period, the probability of rehabilitation of this peer in the next state should
be estimated as 1/c. The probabilities PRHS and PRHL that lead to the same ex-
pected punishment time per type of peer (throughout a peer’s lifetime) depend
on the parameters b, ncr0, and d of the credibility mechanism. All these pa-
rameters can be inter-related by means of the optimization procedure presented
in Section 5. Thus, for given b, ncr0, and d, appropriate values of PRHS and
PRHL can be derived that render the Markov-chain model a good approxima-
tion of the evaluation of the actual systems. The steady state distribution of the

8 T.G. Papaioannou and G.D. Stamoulis

model is depicted in Figure 2a for a certain peer-to-peer system with S0 = 30,
L0 = 20, r = 0.5, q = 0.1 and rehabilitation probabilities PRHS = 0.1 and
PRHL = 0.0024. As already discussed, these values of PRHS and PRHL result
from the proper selection of the parameters of the credibility mechanism accord-
ing to the procedure described in Section 4. In the peer-to-peer system of Figure
2a, sincere peers are almost never under punishment during their lifetime, while
liar peers are under punishment almost all of their lifetime. Thus, the credibility
mechanism is very effective in expelling liar peers from the peer-to-peer system
if its parameters are properly selected.

4 The Procedure for Optimizing the Mechanism

As shown in Figure 2, the credibility mechanism is capable of providing the
right incentives to peers for truthful reporting of feedback. However, this result
applies for certain rehabilitation probabilities (essentially for certain expected
punishment periods) that are determined by the parameters of the mechanism
(i.e. initial non-credibility ncr0, the base b of the exponential punishment, and
the restoration factor d). These parameters have to be properly selected on
the basis of the peer-to-peer system’s, i.e. peers’ lifetime, service availability,
service request probability etc. in order lying to be effectively punished without
inducing an unacceptable overhead for sincere peers. In this section, we propose
a methodology for the calculation of the proper parameters of the mechanism
for any peer-to-peer environment. We specify two objectives when employing the
credibility mechanism in a peer-to-peer system:

– Objective 1: Sincere peers must not be punished more than once during their
lifetime.

– Objective 2: Liar peers must always be punished when they transact with
other sincere peers.

Specifically, consider the Markov-chain model of peer-to-peer system described
in the previous section. Recall that we have defined as the time step of our
discrete time Markov chain the duration of a transaction. The expected value of
this is henceforth referred to as transaction unit. Furthermore, recall that, for
the peer-to-peer system originally defined in Section 2, we assume that time is
slotted, while the population of the peer-to-peer system is dynamically renewed,
and S0, L0 are kept constant. Moreover, each time slot equals the minimum
time interval between two successive service requests by the same peer. Next,
we explain how we can inter-relate the two aforementioned systems. We denote
as tlifetime the mean lifetime of a peer in time slots. We also denote as ts (resp.
tl) the mean number of time slots that a sincere peer is not under punishment
during his lifetime, when our credibility mechanism is employed in the peer-to-
peer system. Thus, S0(ts/tlifetime) (resp. L0(tl/tlifetime)) is the mean number of
sincere (resp. liar) peers not under punishment at a certain time slot. Recalling
that y is the probability to find a requested service, then the mean total number
Ntrans of transactions per time slot is given by the following equation:

Optimizing an Incentives’ Mechanism for Truthful Feedback 9

Ntrans = y
tsS0 + tlL0

tlifetime
(5)

Furthermore, we denote as ns and nl the mean numbers of transaction periods
that a sincere and a liar peer respectively are not under punishment during
their lifetime. Therefore, ns = Ntrans · ts, nl = Ntrans · tl and nlifetime =
tlifetime ·Ntrans. Recall now that according to the Markov model, the distribution
of each punishment period is geometric with expected value equal to 1/PRHS for
sincere peers and 1/PRHL for liar peers. Using ergodic arguments, Objectives 1
and 2 lead to the following equations:

1
PRHS

= tlifetime − ts =
nlifetime − ns

Ntrans
(6)

1
PRHL

=
nlifetime − nl

ytl
tsS0

tsS0+tlL0

=
nlifetime − nl

ynl
nsS0

nsS0+nlL0

Ntrans (7)

Indeed, Objective 1 amounts to equation (6), which implies that the expected
punishment time for sincere peers equals the mean duration (in transaction peri-
ods) of the one and only punishment during their lifetime. Objective 2 amounts
to equation (7), which implies that the expected punishment time for liar peers
equals the mean punishment time of a liar peer in transaction periods divided
by the mean number of time slots where: (i) he is not under punishment, and (ii)
he gets punished upon transaction with a sincere peer. The tsS0/(tsS0 + tlL0)
in the dominator of equation (7) expresses the percentage of unpunished peers
that are sincere. Note that equations (6) and (7) express the most conservative
bounds arising from Objectives 1 and 2 for the mean punishment periods of
a sincere and a liar peer respectively. For example, equation (6) expresses the
mean duration of one complete punishment period, while according to Objec-
tive 1 sincere peers are not punished more than once. Equation (6) (resp. (7))
involves ns (resp. nl), which determines the mean fraction of a sincere (resp.
liar) peer’s lifetime that he is not under punishment, namely ns/nlifetime (resp.
nl/nlifetime). In equations (6) and (7), the values of these fractions are treated
as inputs. However, these values actually arise as a result of the operation of the
credibility mechanism. Thus, the input values in equations (6) and (7) have to
be consistent with those resulting due to the mechanism. Therefore, in order to
determine the values of ns, nl that render the objectives feasible a fixed-point
approach is followed:

1. Initially, we take that ns = min{0.95 · nlifetime, 10} and nl = min{0.05 ·
nlifetime, 1}.

2. We calculate the mean fraction of a peer’s lifetime that he is not under
punishment, which equals ns/nlifetime for sincere and nl/nlifetime for liar
peers.

3. From equations (6) and (7) we calculate PRHL and PRHS . These are em-
ployed in the Markov-chain model and the steady-state distribution of the
punishment state is calculated.

10 T.G. Papaioannou and G.D. Stamoulis

4. Then, the mean fraction of a peer’s lifetime that he is not under punish-
ment is re-calculated for sincere and liar peers based on the steady state
probabilities, i.e. ńs/nlifetime for sincere and ńl/nlifetime for liar peers.

5. If a convergence criterion is met, e.g. |ńs − ns| < ε and |ńl − nl| < ε, then
a fixed point has been reached, and the proper values of ns, nl have been
found for this peer-to-peer system. Otherwise, we set ns = (1 − δ)ns + δńs

and nl = (1 − δ)nl + δńl, where δ ∈ (0.5, 1) is a relaxation parameter, and
the control is transferred back to step 2.

Having determined the values of ns and nl that give rise to Objectives 1 and
2, the proper parameters of the credibility mechanism have also to be derived.
The expected value of total punishment period in time slots for a liar peer that
is punished in all of his transactions is at most E[bncr0(1+ b2 + ..+ bv)], where v
is the number of transactions. This is approximated as bncr0(1 + b2 + .. + by·tl),
since E[v] = y · tl, which is henceforth treated as integer for simplicity. The total
punishment period for a liar peer should be equal to the mean total punishment
time for that peer tlifetime−tl, see equality (8). (Note that this is a bound because
the last punishment period may not be fulfilled until the end of the lifetime of
the peer. However, again we take the equality, as it is the most conservative
relation.) Similarly, the total expected punishment time of a sincere peer is taken
as bncr0−d·rh (see equation (9)). rh is the expected number of time slots where
transactions are conducted by a sincere peer until his one and only punishment
(see equation (10)) and d is the restoration factor; thus rh·d is the decrease in the
sincere peer’s non-credibility value until his punishment. Note that the relations
for b and ncr0 involve d as a parameter. Instead of setting one more objective and
devise one more equation in order to determine d, we take d = 0.5 for illustrative
purposes. This is a meaningful choice for the restoration of a disagreement to
require two agreements. Therefore, b, ncr0 (and rh) can be determined by the
following equations.

tlifetime − tl = bncr0
bytl − 1
b − 1

(8)

bncr0−d·rh = tlifetime − ts (9)

rh =
y(1

PS
− 1)

Ntrans
(10)

5 Results

5.1 The Simulation Model

In order to evaluate the optimization procedure, we apply the calculated param-
eters of the credibility mechanism in a simulated peer-to-peer environment where
the mechanism is employed. Specifically, we consider a peer-to-peer system em-
ploying the credibility mechanism where services of a certain kind are exchanged

Optimizing an Incentives’ Mechanism for Truthful Feedback 11

among peers. Each peer employs a reporting strategy regarding the sincerity of
his feedback: he is either (always) sincere or liar. All liars follow the destructive
strategy defined in [1] and they are collaborated to each other. According to the
destructive strategy, liar peers maliciously send reverse feedback about the out-
come of their transaction. The reporting types (i.e. lying strategies) of peers are
private information, i.e. only the peer himself knows whether he is liar or sincere.
Time is assumed to be slotted. The duration of the time slot is of the same order
of magnitude as the average interval between two successive service requests. At
each slot, every peer requests a service with a certain probability r = 0.5. Service
availability is Uniform with probability q to find a service at a particular peer.
A peer can serve only one peer per slot due to his limited resources. Further-
more, the population of peers is assumed to be renewed according to a Poisson
process with mean rate λ peers/time slot. That is, each peer is assumed to live
in the peer-to-peer system for a period determined according to the exponential
distribution with mean N/λ, where N is the total size of the population. When
a peer leaves the system, a new entrant of the same type takes his place. After
a transaction each of the peers involved sends feedback to the credibility mech-
anism as explained in Section 2. The non-credibility values are increased upon
disagreement with his transacted peer in their feedback by 1 and decreased upon
agreement by d = 0.5. In the experiments conducted, we assess the incentives
offered for truthful reporting measuring the mean fraction of punishment time
over lifetime per peer of each reporting type.

5.2 Assessment of the Optimization Procedure and the Markovian
Model

In this subsection, we assess the accuracy of the optimization procedure of the
parameters of the credibility mechanism. For various peer-to-peer systems with
different characteristics (S0, L0, r, q, peers’ lifetime) we employ the optimization
procedure in order to calculate the proper values of parameters b and ncr0 of
the credibility mechanism. Then, we employ the Markovian model to derive
the probability that a peer of a certain type is not punished at equilibrium,
denoted as PMS and PML for sincere and liar peers respectively. Then, we
run simulations, according to the model of Subsection 5.1, using the optimized
parameters b and ncr0 for each of these systems in order to find the mean
fraction of the lifetime per peer of a certain type that he is not punished, denoted
as PSS and PSL for sincere and liar peers respectively. Due to ergodicity, we
expected PMS and PML to be roughly equal to PSS and PSL respectively.
Indeed, as depicted in Table 2, their maximum absolute difference for sincere
peers (i.e. |PSS − PMS|) is 0.03 and for liar peers (i.e. |PSL − PML|) is 0.05.
Thus, although approximate, the optimization procedure is rather effective in
calculating the proper parameters of the credibility mechanism. Furthermore,
the Markov model is an accurate proxy of the simulated environment, since
the fractions of lifetime under punishment for each type of peers in the steady
state also arise in the corresponding simulated environment with the optimized
parameters b and ncr0.

12 T.G. Papaioannou and G.D. Stamoulis

Next, we study how the optimized parameters scale for larger systems (i.e.
when S0 + L0 increases). As shown in Table 3, b and ncr0 remain roughly the
same as the population increases and for different fractions of sincere and liar
peers, keeping the other characteristics of the system constant. Thus, the param-
eters b and ncr0 of the credibility mechanism are not affected by the mixture
of reporting types in the population. Running additional simulations, we find
that the effectiveness of these punishment parameters in providing incentives for
truthful reporting is maintained for much larger systems with the same lifetime,
r and q parameters, as shown in Table 4.

Table 2. Proper punishment parameters for various systems

lifetime Q r S0 L0 b ncr0 PMS PSL PML PSL

1000 0.1 0.5 30 20 4.23 1.66 0.997 0.989 0.011 0.004
150 0.5 0.5 30 25 1.939 3.53 0.982 0.956 0.071 0.021
150 0.1 0.8 30 10 1.22 11.36 0.992 0.969 0.048 0.041
150 0.1 0.5 50 45 1.939 3.5 0.99 0.961 0.075 0.03
150 0.1 0.5 30 25 1.939 3.53 0.982 0.956 0.074 0.024
150 0.1 0.5 100 50 1.939 3.5 0.985 0.974 0.078 0.03

Table 3. Proper b and ncr0 parameters as the peer-to-peer system scales up for larger
systems and for different relative fractions S0/L0, keeping constant lifetime = 150,
q = 0.1 and r = 0.5

S0/L0 S0 + L0 b ncr0 PMS PSL PML PSL

3/2 50 1.939 3.54 0.985 0.963 0.075 0.029
3/2 75 1.939 3.52 0.99 0.97 0.074 0.027

2 30 1.939 3.6 0.982 0.974 0.075 0.031
2 150 1.939 3.5 0.985 0.974 0.078 0.03

3 40 1.939 3.59 0.992 0.982 0.075 0.028
3 60 1.939 3.55 0.994 0.984 0.0725 0.027

As depicted in Figure 2, the optimization procedure and the Markov model
are both very accurate in the estimation of the proper parameters of punish-
ment and very effective in deriving the punishment parameters that render the
mechanism very efficient. Next, we examine how the rest of the characteristics
of the peer-to-peer system affect punishment parameters. The probability q to
find a certain service at a specific peer determines the service availability and
affects the number of transactions conducted per time slot. Provided that there
is only small probability for a requested service not to be found at all in the
peer-to-peer system, then q essentially does not affect parameters b and ncr0
(see Table 2). Furthermore, the rate of transactions (that depends on service
request probability r) is important in order for lying to be revealed and properly

Optimizing an Incentives’ Mechanism for Truthful Feedback 13

Table 4. The punishment parameters b = 1.939 and ncr0 = 3.5 remain effective in
providing incentives for truthful reporting as the simulated peer-to-peer system scales
up, when lifetime = 150, q = 1 and r = 0.5

S0 L0 PMS PSL

500 100 0.973 0.038
600 400 0.9651 0.036
900 600 0.9643 0.042

Table 5. The impact of service request probability to punishment parameters when
lifetime = 150, q = 0.1, S0 = 30 and L0 = 20

r b ncr0

0.2 13 1.09
0.5 1.939 3.54
0.8 1.22 11.33

Fig. 2. The Markov model (a) is accurate as it approximates simulation results (b).
The optimization procedure is successful as it finds punishment parameters that lead
to a beneficial steady state. q = 0.1, r = 0.5, b = 1.939, ncr0 = 3.5, lifetime = 150.

Table 6. The impact of of lifetime to punishment parameters when r = 0.5, q = 0.1,
S0 = 30, L0 = 10

lifetime b ncr0

50 11.17 0.67
150 1.94 3.59
300 2.63 2.49
500 3.24 2.07

punished. The rate of transactions has a considerable impact on the calculation
of the proper punishment parameters, as demonstrated in Table 5. Notice that
decreasing r results in higher b and lower ncr0, as expected for inducing heavier
punishment to liar peers since their transactions are now less frequent.

Another important aspect of the peer-to-peer system that affects the calcula-
tion of proper punishment parameters is the renewal rate of the population. In
fact, as shown in Table 6, if peers are short-lived, then the value of b should be
large and the value of ncr0 should be relatively small. Indeed, for a liar peer, the
most likely case is to be punished early enough and only once, due to his short

14 T.G. Papaioannou and G.D. Stamoulis

lifetime; the aforementioned values of b and ncr0 render this punishment severe
enough. On the other hand, for long-lived peers the punishment parameters ad-
just smoothly to punish liar peers progressively for all of their longer lifetime.
Note that the optimization procedure computes always the same punishment
parameters b and ncr0 for a peer-to-peer system with specific characteristics.

6 Conclusions

In this paper, we have studied the credibility mechanism that we first proposed
in [1]. This mechanism provides incentives for truthful reporting of ratings’ infor-
mation in peer-to-peer systems. The credibility mechanism attains this objective
by discovering and punishing liar peers. Also, we modeled the employment of
the credibility mechanism in a peer-to-peer system as a Markov-chain. Although
approximate, this Markov-chain model is rather accurate. It has proved to be a
very useful tool for tuning the parameters of the mechanism in an actual system
by means of the fixed-point optimization procedure that was also proposed in
this paper. Furthermore, our approach for finding the appropriate punishment
parameters has proved to be very successful: Indeed, the optimized credibility
mechanism meets the objectives on punishment. It practically expels liar peers
from the system at effectively very limited cost for sincere peers even in a dy-
namic environment, thus providing the right incentives for truthful reporting.
The Markov-chain model and the optimization procedure were developed under
the assumption of a particular strategy for lying peers. Incorporation of different
lying strategies in our model is left for future research.

References

1. Papaioannou, T.G., Stamoulis, G.D.: An Incentives’ Mechanism Promoting Truth-
ful Feedback in Peer-to-Peer Systems. In: Proceedings of the 5th IEEE/ACM
International Symposium in Cluster Computing and the Grid, Cardiff, UK (2005)

2. Papaioannou, T.G., Stamoulis, G.D.: Effective Use of Reputation in Peer-to-Peer
Environments. In: Proceedings of the 4th IEEE/ACM International Symposium
in Cluster Computing and the Grid, Chicago, Illinois, USA (2004)

3. Dellarocas, C.: Immunizing Online Reputation Reporting Systems Against Unfair
Ratings and Discriminatory Behavior. In: Proceedings of the 2nd ACM Conference
on Electronic Commerce, Minneapolis, MN, USA (2000)

4. Schillo, M., Funk, P., Rovatsos, M.: Using Trust for Detecting Deceitful Agents in
Artificial Societies. Applied Artificial Intelligence 14 (2000) 825–848

5. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: Managing and
Sharing Servents’ Reputations in P2P Systems. IEEE Transactions on Knowledge
and Data Engineering 15 (2003) 840–854

6. Yu, B., Singh, M.P.: Distributed Reputation Management for Electronic Com-
merce. Computational Intelligence 18 (2002) 535–549

7. Aberer, K., Despotovic, Z.: Managing Trust in a Peer-to-Peer Information Sys-
tem. In: Proceedings of the 10th International Conference on Information and
Knowledge Management, New York, NY, USA (2001)

Optimizing an Incentives’ Mechanism for Truthful Feedback 15

8. Jurca, R., Faltings, B.: Eliciting Truthful Feedback for Binary Reputation Mech-
anisms. In: Proceedings of IEEE/WIC/ACM International Conference on Web
Intelligence, Beijing, China (2004)

9. Antoniadis, P., Courcoubetis, C., Mason, R., Papaioannou, T.G., Stamoulis,
G.D., Weber, R.: Results of peer-to-peer market models. (2004) Project IST
MMAPPS: Deliverable 8. Available at: http://www.tik.ee.ethz.ch/˜mmapps/www.
mmapps.org/results/main.html.

10. Feldman, M., Papadimitriou, C., Chuang, J., Stoica, I.: Free-riding and white-
washing in peer-to-peer systems. In: Proceedings of the ACM SIGCOMM Work-
shop on Practice and Theory of Incentives in Networked Systems, Portland,
Oregon, USA (2004)

11. Fowler, J.H.: Altruistic Punishment and the Origin of Cooperation. Proceedings
of the National Academy of Sciences of the United States of America 102 (2005)
7047–7049

A New View on Normativeness
in Distributed Reputation Systems

Beyond Behavioral Beliefs�

Philipp Obreiter1 and Birgitta König-Ries2

1 Institute for Program Structures and Data Organization
Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

obreiter@ipd.uni-karlsruhe.de
2 Institute of Computer Science

Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
koenig@informatik.uni-jena.de

Abstract. Autonomous entities in artificial societies are only willing to cooper-
ate with entities they trust. Reputation systems keep track of the entities’ behavior
and, thus, are a widely used means to support trust formation. In a P2P network,
the reputation system needs to be distributed to the individual entities. In previous
work, we have shown that some of the limitations of distributed reputation sys-
tems can be overcome by making use of hard evidence. In this paper, we take this
idea one step further by deriving beliefs of others’ trustworthiness from one’s
own experiences and the available hard evidence. For this purpose, we justify
why a self-interested autonomous entity may choose to behave according to the
norms of the system designer. As a consequence, the proposed belief model does
not only incorporate behavioral beliefs but also beliefs regarding the normative-
ness of an entity. We prescribe how beliefs are revised if new evidence becomes
available. The introduced models for recommendations and belief formation en-
able us to prove that self-interested entities always issue truthful recommenda-
tions regarding transactional behavior. The simulative evaluation shows that a
self-interested entity can be expected to be normative and, thus, to comply with
our system design.

1 Introduction

If you look at computer systems, there is a clear trend away from closed monolithic
systems towards self-organizing artificial societies composed of autonomous entities
with no central control and no commonly trusted unit. Examples are peer-to-peer sys-
tems, open multi-agent systems, and ad hoc networks. All these systems have a number
of characteristics in common: In order to achieve their individual goal, it is necessary
for the entities in the system to cooperate. However, due to their autonomy, on the one
hand, entities will only cooperate, if it is beneficial to them, on the other hand, entities

� The work done for this paper is funded by the German Research Community (DFG) in the
context of the priority program (SPP) no. 1140. The authors would like to thank Michael
Klein, Jens Nimis and Sokshee Goh for their comments on this paper. In addition, we are
grateful for Peter Reiher’s comments on the legal obstacles for tampering software.

Z. Despotovic, S. Joseph, and C. Sartori (Eds.): AP2PC 2005, LNAI 4118, pp. 16–29, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A New View on Normativeness in Distributed Reputation Systems 17

are able to cheat in the course of a cooperation. In order to avoid being cheated on, an
entity will only cooperate with entities it trusts.

Distributed reputation systems are a commonly suggested means to support trust
formation [1, 2, 3, 4]. They allow for the exchange of information about certain entities’
behavior and make it thus possible to base trusting decisions not only on one’s own
prior experience with that entity but also on others’ experiences. The major challenge
for the design of distributed reputation systems consists of accurately estimating others’
behavior based on the information at hands. In previous work [5], we have argued that
some of the exchanged information should be non-repudiable (and, thus, become hard
evidence) in order to improve the accuracy of the estimation. Other authors [4] propose
the inclusion of norms for the same purpose. However, existing distributed reputation
systems cannot make use of the additional information provided by hard evidence and
norms. For the most part, this is due to their ignorance of non-repudiability and their
fixation on behavioral information. In this paper, we make up for these deficiencies by
redesigning distributed reputation systems. We mainly contribute (1) by justifying the
consideration of norms for systems of self-interested autonomous entities, and (2) by
providing a multi-layered belief model that derives the belief of others’ normativeness
from own experiences and hard evidence.

The remainder of this paper is structured as follows: In Section 2, we extend the
basic system model by considering hard evidence and norms. In Section 3, we show
that existing approaches fail to exploit relevant information for the formation of beliefs.
Based on this analysis, we make up for this deficiency by proposing a novel belief
model in Section 4. We evaluate the properties of the redesigned distributed reputation
system in Section 5 and, finally, conclude the paper in Section 6.

2 System Model

In this section, we present the system model that is assumed for the remainder of this
paper. For this purpose, we describe the basic system model and extend it in two direc-
tions: (1) Based on the ideas of our previous work [5], non-repudiability is proposed
as a means of acquiring hard evidence. In this context, a recommendation model based
on hard evidence is described. (2) We suggest that system design should make use of
norms and provide a justification of this idea. The justification is valid even for systems
that consist of self-interested autonomous entities.

2.1 Basic System Model

The system consists of entities that may enter into transactions at any time. Each trans-
action occurs between a pair of entities (transaction peers). Each transaction peer ex-
ecutes an action on behalf of the transaction partner1 who is able to check whether
the action has been executed correctly. The autonomy of the entities implies that an
entity may defect by failing to execute its action. Take for example two entities of a

1 This assumption of mutually beneficial transactions may be relaxed by making use of non-
repudiable promises [6].

18 P. Obreiter and B. König-Ries

P2P network that agree on exchanging a pair of documents. After having received the
document of the transaction partner, a transaction peer may defect by refusing to trans-
mit its promised document. The reputation system keeps track of defections in order
to caution the entities about the defectors. In the absence of a central component, the
reputation system is distributed to the entities themselves. More specifically, each entity
runs a local instance of the reputation system. As a prerequisite for the operation of a
distributed reputation system, the entities have to be able to send authenticated mes-
sages. This means that the recipient of a message knows which entity has sent it. For
this purpose, each entity has a unique and unalterable identity. The local instances of
the reputation system may cooperate by exchanging recommendations. The issuer of a
recommendation (recommender) communicates information regarding a certain entity
(recommendee) to the recipient of the recommendation.

2.2 Evidential Extension of the System Model: Non-repudiability and Hard
Evidence

In our previous work [5], we have pointed out that distributed reputation systems should
make use of non-repudiability. In the following, we recapitulate this idea and extend the
system model accordingly.

Each entity is able to issue non-repudiable tokens and verify the validity of the non-
repudiable tokens that have been issued by others. By this means, the issuer of such a
token is able to non-repudiably commit to a statement. The token itself provides hard
evidence of this commitment. Hence, we refer to non-repudiable tokens as hard evi-
dence in the remainder of this paper. As we have pointed out in [5], presuming a means
of non-repudiability is practically not a stronger assumption than presuming a means of
authenticating messages.

According to the basic system model, a transaction consists of the exchange of re-
pudiable actions between the transaction peers. This transactional model is extended
as follows: The transaction peers exchange a pair of non-repudiable tokens before and
after the proper transaction. First, each transaction peer commits to the imminent trans-
action and its terms by issuing a contract to its transaction partner. After the exchange
of actions, each transaction peer issues a receipt and, thus, confirms that its transac-
tion partner has complied with the transaction terms as promised. In the absence of a
trusted third party, defections are still possible by retaining one’s own contract, action
or receipt.

The availability of contracts and receipts leads to a redefinition of the recommen-
dation model. It dispenses with (potentially fake) reports of beliefs. Instead of that, a
recommendation consists of hard evidence and is required to be non-repudiable. By
this means, a recommender is forced to commit to the content of his recommendations.
We distinguish between three types of recommendations: (1) Disrecommendations:
The perception of cooperation is documented by a receipt. In a disrecommendation,
an entity commits to such a perception. A disrecommendation is required to be non-
repudiable so that its recipient has hard evidence of such commitment. Furthermore, we
apply the policy that, in order to be valid, a disrecommendation has to enclose the con-
tract of the entity that reportedly defected [5]. By this means, disrecommendations are

A New View on Normativeness in Distributed Reputation Systems 19

always based on transactions that actually took place. (2) Self-recommendations: Each
entity may disseminate its receipts by issuing self-recommendations [7]. (3) Inconsis-
tency proofs: An inconsistency proof can be furnished if an entity issues non-repudiable
commitments that are mutually incompatible. This is the case if an entity issues both a
receipt and a disrecommendation regarding the same transaction.

2.3 Normative Extension of the System Model: Justification and Norm Design

In the past, it has been proposed to include norms into the design of distributed reputa-
tion systems [4]. However, the authors fail to justify why a self-interested autonomous
entity could possibly decide to abide with norms that are detrimental to itself. In the fol-
lowing, we provide such a justification. Furthermore, we provide a thorough discussion
of how norms should be designed. In addition, we define the type of an entity based on
its normativeness.

System design and autonomy. According to the basic system model, each entity is
autonomous and, thus, cannot be forced to behave in a certain way. Instead of that,
each entity is only controlled by its human principal. For example, in a P2P system
like KaZaA, a piece of software constitutes the entity and the user owning the hardware
represents the human principal. If the user is not pleased with the performance of the
software, he can remove or tamper it. The user does not have to be an expert for doing
so if he has access to a tampered version of the software that meets his demands.

What are the consequences if each entity can be arbitrarily tampered? The system de-
signer conceives a set of algorithms that should be run by the participants of the system.
Traditionally, it is argued, that, if any part of the algorithms is not incentive compatible,
the designer has to expect that the entities are tampered. Therefore, incentive compati-
bility of any behavior becomes the key criterion of system design (e.g., [8]). However,
this is not completely true.

Tampering costs and compliance costs. In the following, we argue that – contrary to
popular belief – tampering does incur some costs (tampering costs) and that, as a con-
sequence, system design is disburdened of some difficulties.

A human principal may tamper his entity either by creating a tampered version of
the software or by adopting the tampered version of others. Both options violate laws
for a couple of reasons: (1) Tampering includes re-engineering of the software. In the
US, this is explicitly forbidden by the Digital Millennium Copyright Act if the soft-
ware is protected by a technical means [9]. (2) A tempered version represents a derived
work. Hence, its creation or distribution infringes copyright law. This also applies the
adoption of a tampered version since it incurs downloading and, thus, duplicating the
derived work [10]. (3) Contractual law is violated, too, if the system designer protects
his software by an adequate licence. In contrary to the US, such contractual protection
is forbidden in the EU by the Software Directive §6.1 [11]. Still, the system designer
could demand that the users agree with a licence regarding the identities that he assigns
to them. According to that additional licence, identities may only be used in connec-
tion with the original software. By this means, the use of tampered versions infringes
contractual law even in the EU.

20 P. Obreiter and B. König-Ries

Furthermore, there are tampering costs that are specific to the creation or adoption
of tampered versions: The creation of a tampered version requires expert skills and is
rendered even more costly by the means of code obfuscation [12]. On the other hand,
the adoption of a tampered version exposes the user to risks due to the intransparency
of its behavior. It could perform worse than the original version or even be a trojan.
Consequently, tampering one’s own entity always incurs costs.

We do not claim that these costs are prohibitive. Rather, we argue that system de-
sign should make use of these tampering costs, even if they are small. This means that
system design could foresee some behavior that is not fully incentive compatible. As a
result, complying with the system design also incurs some costs (compliance costs). It
is clear that entities are tampered whenever these compliance costs exceed the tamper-
ing costs. For this purpose, system design has to keep the compliance costs as marginal
as possible. This rules out systems in which the participants are designed to behave al-
truistically2. However, it makes sense to design a system in which proposed behavior
may be not fully incentive compatible under infrequent circumstances.

Norm design. A norm refers to a non-enforceable rule given by the system designer
(i.e., r-norms [13]). We propose to incorporate norms into the design of distributed rep-
utation systems. The presence of norms leads us to defining the type of entities based on
their normativeness: An entity’s type is normative if the entity always complies with the
norms. Hence, normative entities adhere to the original system software. Contrarily, its
type is strategic if it decides whether to comply depending on the circumstances. There-
fore, strategic entities run a tampered version of the system software. In the following,
we discuss which norms should be included into the design of the system.

Norm design has to reconcile two conflicting demands. (D1) Norms should pre-
scribe cooperative behavior in order to allow a population of norm compliant entities
to perform well. (D2) Norms have to be self-enforcing by rendering norm compliance
incentive compatible. If norms are not sufficiently self-enforcing, the compliance costs
surpass tampering costs so that entities are tampered and deviate from the norm. In or-
der to obtain self-enforcing norms, we propose to orientate norm design towards two
maxims. (D2a) The only means of being perceived as normative entity is to actually
abide with the norms. For this purpose, behavior that is prescribed in a norm has to
be highly perceptible by others. (D2b) Each entity wants to be perceived as norma-
tive entity, i.e., as an entity that always complies with the norms. The maxims create a
momentum towards self-interested norm compliance.

We propose two norms: (N1) Never defect in a transaction after having agreed on
participating in it. (N2) Never issue inconsistent statement about the same issue. These
norms meet the above demands of norm design: (D1) Both norms prescribe cooperative
behavior. (D2a) Compliance with norm (N1) is perceptible to the transaction partner.
Furthermore, compliance with norm (N2) has the potential of being fully perceptible
by any entity if statements are required to be non-repudiable. (D2b) Since a transaction
represents a win-win situation, each entity desires to participate in as much transactions
as possible. For the choice of transaction partners, an entity prefers those entities that

2 For example, the reputation mechanism of KaZaA has been hacked because it presumes that
each entity truthfully calculates and disseminates its reputation.

A New View on Normativeness in Distributed Reputation Systems 21

are least likely to defect. Normative entities abide with norm (N1). Hence, entities want
to be perceived as normative in order to be preferred as transaction partners. By an anal-
ogous argumentation for norm (N2), we obtain that each entity wants to be perceived
as normative so that its statements are given more weight.

3 Exploiting Information for the Formation of Beliefs

In the previous section, the system model has been extended in order to account for hard
evidence and norms. In this section, we point out that a distributed reputation system
should exploit additional information that arises from these extensions. Furthermore,
we discuss behavioral beliefs and show that their formation is the ultimate goal of a
distributed reputation system. Based on these preconsiderations, we review existing
distributed reputation systems.

3.1 Information and Behavioral Beliefs

An entity runs a local instance of the distributed reputation system in order to obtain
support for its trusting decisions. In the following, we take a closer look at the general
set-up for the provision of such support. The treatment is divided into two steps. First,
we examine which type of information is available as input to a local instance of the
reputation system. Second, we show that behavioral beliefs are required as output in
order to support trusting decisions.

Information. The most obvious source of information are first-hand experiences. In
the course of a transaction, the transaction partner may cooperate or defect. Since
norm (N1) prescribes ”never defect”, these two cases correspond to normative and non-
normative behavior respectively. In the following, we denote normative behavior by

entity Y with N(b)
Y and non-normative (strategic) behavior with S(b)

Y . Therefore, first

hand experiences regarding entity Y consist of a sequence of N(b)
Y and S(b)

Y . An entity
has to consider the first hand experiences made by others that are communicated in
recommendations. The recommendation model of Section 2.2 ensures that the contents
of the recommendation relates to transactions and conflicts that actually occurred. Fur-
thermore, transactional behavior is context-dependent [14]. This means that, even if an
entity always behaves well in a specific context (e.g., low value transactions), it could
still misbehave in other contexts. Hence, an entity should make use of context informa-
tion in order to assess transactional behavior.

Behavioral beliefs. The decision whether to participate in a transaction represents a
trusting decision. In order to make this decision, an entity has to predict the likely be-
havior of the potential transaction partner (say Y). Such a prediction has to cope with
two types of uncertainty [15]: Aleatory uncertainty (or stochastic uncertainty) results
from the fact that the transaction partner may behave in random ways. This means

that there exists an intrinsic probability p(N(b)
Y) that Y behaves cooperatively in the

22 P. Obreiter and B. König-Ries

forthcoming transaction. In contrast, epistemic uncertainty (or subjective uncertainty)
ensues from the lack of knowledge about the transaction partner. Therefore, the proba-
bility has to be estimated according to one’s own current beliefs [16]. We denote such

subjective estimate by entity X with pX(N(b)
Y). Since the estimate is based on X’s beliefs

and regards Y ’s behavior, we refer to it as behavioral belief of X regarding Y .
We elaborate on three important issues of behavioral beliefs. First, a behavioral be-

lief is a probabilistic belief due to the aleatory uncertainty. Second, a behavioral belief
is fallible due to the epistemic uncertainty. Therefore, it might be necessary to revise it
if new information becomes available. Third, the probabilistic interpretation of behav-
ioral beliefs provides for a straightforward means of making trusting decisions. More
specifically, an entity decides to participate in a transaction if its expected utility is
positive [2].

3.2 From Information to Behavioral Beliefs: Existing Approaches

In the following, we analyze how existing approaches of distributed reputation systems
derive behavioral beliefs from the information at hand. We focus our analysis in two
directions: (1) We do not consider approaches that make use of a central component
in order to manage reputation (e.g., [17]) or foresee side-payments (e.g., [8]). (2) An
approach is not taken into account if it does not provide for probabilistic estimations
of behavior. This is because such estimations are a prerequisite for utilitarian decision
making. Examples of approaches that fail to fulfill this requirement are [3].

The approaches of [1, 2] presume that the inert probability p(N(b)
Y) of cooperative be-

havior by Y is the same for each transaction of Y . In such a case, Y ’s behavior follows

a Bernoulli distribution of N(b)
Y and S(b)

Y . Based on this assumption, the beta function

is proposed as probability density function regarding p(N(b)
Y) [1]. By this means, both

aleatory and epistemic uncertainty are taken into account. Furthermore, first hand ex-
periences can be directly integrated into the parameters of the beta function. However,
this approach lacks a theoretically founded means of integrating others’ first-hand expe-

riences. Therefore, the maximum likelihood estimation of p(N(b)
Y) is suggested in [2].

This provides a straightforward means of integrating others’ first-hand experiences.
We argue that behavioral approaches suffer from three deficiencies: (1) The con-

sideration of others’ first-hand experiences is solely based on plausibility and dispenses
with hard evidence. According to [5], this yields several limitations. (2) The approaches
do not allow for the integration of type information. Even if entity Y was known to be

normative, the probability p(N(b)
Y) is not necessarily 1 since the entity could defect un-

intendedly. The other way round, a strategic entity Y does not have to defect in every
transaction. (3) The approaches are based on the assumption that the inert probability
of cooperative behavior is the same for each transaction. This inhibits the use of con-
text information. Therefore, it has been proposed to provide separate behavioral beliefs
for a set of potentially interrelated context categories [18]. Yet, the definition of the
categories’ granularity is difficult because it has to trade off the imprecision of ag-
gregating contexts with the overhead of managing several separate behavioral beliefs
for each entity.

A New View on Normativeness in Distributed Reputation Systems 23

4 The Multi-layered Belief Model and Belief Revision

Existing approaches apply too narrow models of beliefs that cannot exploit the infor-
mation at hands. Therefore, in this section, we redesign the belief model by proposing
several novel concepts: (1) Type beliefs are modelled such that epistemic uncertainty is
taken into account. (2) Beliefs regarding type and behavior are interrelated by a multi-
layered mapping. It explicitly models context-dependent norm abidance and unintended
defection. (3) The revision strategy of type beliefs is able to take any relevant informa-
tion (including behavioral information) into account.

4.1 The Belief Model

Apart from behavioral beliefs, we propose to make use of beliefs regarding an entity’s
type and intentions. In addition, we interrelate beliefs by suggesting the mappings type-
to-intention and intention-to-behavior. The ensuing three layers of beliefs are illustrated
in Figure 1.

Type beliefs and intention beliefs. In order to capture epistemic uncertainty, we model
a belief regarding an entity’s type as a probabilistic belief. For this purpose, we intro-
duce some further notation: We denote the fact that entity Y is normative/strategic with

N(t)
Y and S(t)

Y respectively (the superscript (t) refers to Y ’s type). Thus, the type belief

of entity X regarding entity Y is the subjective probability pX(N(t)
Y). According to Sec-

tion 2.3, an entity is either normative or strategic. Hence, there is no aleatory uncertainty
about an entity’s type. Consequently, a type belief may be expressed as a simple prob-
ability. Contrarily, the existing behavioral approaches have to make use of probability
density functions in order to account for both aleatory and epistemic uncertainty.

In order to interrelate type beliefs and behavioral beliefs, we introduce an intermedi-
ate kind of belief regarding intentions. Entity Y may intend to abide with norm (N1) by

refraining from defection. We denote this fact with N(i)
Y . If Y intends to break the norm

by defecting, its intention is strategic (denoted with S(i)
Y). Thus, an intention belief 3 of

X regarding Y is the subjective probability pX(N(i)
Y).

Type-to-intention mapping. An entity’s intention is derived from its type. Normative en-

tities always intend to abide with the norms, hence pX(N(i)
Y |N(t)

Y) = 1. However, strate-
gic entities abide with the norms only if they want to. Their decision of norm abidance
is based on the context γ of the transaction. In the following, we denote the subjective

probability pX (N(i)
Y |S(t)

Y ,γ) that a strategic entity intends norm abidance with p(n)
X (γ). If

the transaction value v is the main driving force of context-dependent behavior, a sim-
ple estimate of this probability is e−κv with some positive parameter κ. This type-to-
intention mapping incorporates context-dependence more seamlessly than the existing
behavioral approaches. This is because it solves their conflict between imprecision of
aggregating contexts and overhead of separate context categories.

3 This definition is compatible to the BDI-architecture [19]. It refers to X’s beliefs regarding Y ’s
intention.

24 P. Obreiter and B. König-Ries

Fig. 1. Derivation of behavioral beliefs from type beliefs

Intention-to-behavior mapping. An entity’s behavior is derived from its intention. The
intention to abide with the norms is a prerequisite for actually abiding with them, hence

pX(N(b)
Y |S(i)

Y ,γ) = 0. However, norms can be broken unintendedly. The probability of
unintended defection depends on the context of the transaction. For instance, parti-
tioning is more likely to occur in long running transactions. Therefore, we have to

estimate the conditional probability pX(S(b)
Y |N(i)

Y ,γ) that we denote with p(u)
X (γ) in the

following.
The estimation of unintended defection is considerably easier than the one of strate-

gic norm abidance. This is because unintended defection is due to the transaction’s en-
vironment (i.e., nature [20]) that behaves non-strategically. Hence, it suffices to be able
to estimate the probability of partitioning and node failure in order to estimate the sub-

jective probability p(u)
X (γ) appropriately. In such a case, this probability only contains

aleatory uncertainty.

4.2 The Belief Revision

The belief state of an entity consists of its type beliefs regarding the entities it is ac-
quainted with. Whenever previously unknown information becomes available, type be-
liefs have to be revised. In the following, we provide a probabilistically sound means of
such belief revision.

Let us assume that entity X perceives cooperation or defection of its transaction
partner Y for the transaction context γ. In such a case, X’s type belief regarding Y is
revised according to Bayes’ formula. The required conditional probabilities are derived

from the formulas of Section 4.1. For perceived cooperation (N(b)
Y), belief revision is as

follows4:

pX(N(t)
Y |N(b)

Y ,γ) =
pX(N(t)

Y) · pX(N(b)
Y |N(t)

Y ,γ)

pX(N(b)
Y |γ)

(1)

Disrecommendations are considered as follows: If entity Y disrecommends entity

Z, we have to presume that Y or Z defected, i.e., S(b)
Y Z occurred. We cannot infer that

Z defected since Y could have disrecommended after having defected itself. Upon

4 The formula of perceived defection is obtained by replacing N(b)
Y with S(b)

Y .

A New View on Normativeness in Distributed Reputation Systems 25

receival of such a disrecommendation, we revise the beliefs regarding Z based on
Bayes’ formula:

pX(N(t)
Z |S(b)

YZ ,γ) =
pX(N(t)

Z) · pX(S(b)
YZ |N

(t)
Z ,γ)

pX(S(b)
Y Z ,γ)

(2)

The belief regarding Y cannot be revised because, otherwise, the issuance of disrec-
ommendations is not incentive compatible any more. Hence, the belief regarding Y is
only revised if it is disrecommended by Z. This is no restriction since Z possesses the
contract that is needed for issuing a disrecommendation.

Belief revision due to a self-recommendation leads to rehabilitation: A prior disrec-
ommendation could be refuted by the receipt that is enclosed in the self-recommendation.
In such a case, an inconsistency proof regarding the disrecommender Y becomes avail-
able. Before updating the beliefs regardingY , the disrecommendee (and self-recommen-
der) Z has to be rehabilitated from its downgrading of equation (2). This is done by
inverting the equation based on the present type belief regarding Y .

An inconsistency proof evinces that an entity is tampered. If such proof regarding

entity Y is available, the entity is believed to be certainly strategic, i.e., pX(N(t)
Y) = 0.

5 Evaluation

The previous sections have shown how a distributed reputation system has to be re-
designed in order to account for hard evidence and norms. In this section, we discuss
and evaluate two issues that ensue from the redesign: (1) We analyze under which cir-
cumstances strategic entities disrecommend. The analysis shows that defective behavior
always leads to disrecommendations. (2) We determine simulatively the costs that nor-
mative entities have to bear in order to comply with the norms. By this means, we
evaluate to which degree the system’s norms are self-enforcing.

5.1 The Disrecommendation Game

The motivation of discussing disrecommendation behavior is twofold. On the one hand,
most existing approaches fail to provide a means for rendering the issuance of disrecom-
mendations individually rational. We show that our system provides for such a means
and, thus, guarantees that defective behavior of strategic entities is widely perceived as
such. On the other hand, the analysis clarifies the relationship between the two novel
concepts of our approach, i.e., the belief model and the recommendation model.

The analysis of disrecommendation behavior is based on the following situation. Let
us assume that, during a transaction between entity Y and Z, a transaction peer defected
by failing to execute its action. In such a case, both entities possess a contract but lack
a receipt of the transaction and, thus, are able to mutually disrecommend. However, a
strategic Y or Z only chooses to disrecommend if it is in its interests to do so. In the
following, we provide a game-theoretic analysis of this situation.

According to Section 2.2 and 4.2, Y is only able to disrecommend Z to a third party
X if X requested from Y such a disrecommendation. Upon receival of this disrecom-

mendation, X revises its type belief pX(N(t)
Z) regarding Z. More specifically, the belief

26 P. Obreiter and B. König-Ries

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z disrecommends first
Y disrecommends first

pX(NY
(t))

pX(NY
(t)) - p X(NY

(t)|SZY
(b))

Z
no DR DR

Y no DR (0,0) (-cd ,-ci)

DR (-ci,-cd) (-ci-cd+ bf

2 ,-ci-cd+ bf

2)

Fig. 2. (a) Impact of disrecommending first and (b) the Disrecommendation Game

regarding Z’s normativeness is degraded since it could be the originator of the defec-
tion. As a result of the degradation, X becomes less willing to transact with Z. Hence,
the fact of being disrecommended incurs some costs cd for Z. On the other hand, Y
has to bear the costs ci of issuing the non-repudiable disrecommendation and hand-
ing it over to X . Consequently, the disrecommendation appears to be detrimental for
both the Y and Z. However, the prescription of belief revision provides a counterweight
for the costs of disrecommending. If Y knew that Z subsequently disrecommends it to
X , it could preemptively decrease X’s type belief regarding Z by disrecommending Z
first. By this means, the impact of Z’s disrecommendation is decreased. Figure 2(a) il-
lustrates5 these considerations. It interrelates X’s prior type belief regarding Y (x-axis)
with the relative degradation of the type belief after having considered Z’s disrecom-
mendation (y-axis). The impact of Z’s disrecommendation is considerably lower if Y
disrecommends Z first. We conclude that being the first to disrecommend provides for a
comparative benefit b f . For virtually every application area of our system model (e.g.,
P2P systems), the synergies of inter-entity transactions outweigh by far the overhead of
issuing a non-repudiable token. Therefore, we presume that the comparative benefit b f

of disrecommending first largely exceeds the costs ci of issuing a disrecommendation.
We summarize these considerations in the disrecommendation game. Its normal form

is shown in Figure 2(b). If both Y and Z choose to disrecommend (DR), they are equally
likely to disrecommend first. Therefore, their expected comparative benefit of disrec-

ommending first is
b f
2 . If this benefit is higher than the disrecommendation costs ci, we

obtain a coordination game. This means that Y would decide to do as Z if it knew how
Z decides and vice versa. More technically speaking [20], there are two stable equilib-
ria in pure strategies, i.e., (DR,DR) and (¬DR,¬DR). Furthermore, the equilibrium in
mixed strategies consists of Y and Z disrecommending with the probability 2ci

b f
. This

equilibrium is unstable since, whenever Y deviates from this equilibrium strategy by in-
creasing (decreasing) the probability of disrecommending, Z decides to always (never)
disrecommend.

The derivation of equilibrium strategies is based on the assumption that Y and Z
behave rationally. This is the case if both Y and Z are strategic entities. However, ac-
cording to the prescription of Section 2.2, normative entities always disrecommend.
This raises the question how a strategic Y would decide depending on its type belief

5 The illustration is based on p(n)(γ) = 30%, p(u)(γ) = 5% and the prior belief pX (N(t)
Z) = 50%.

A New View on Normativeness in Distributed Reputation Systems 27

pY (N(t)
Z) regarding Z. The probability pY (N(t)

Z) provides a lower bound of the proba-

bility that Z decides to disrecommend. Hence, we derive pY (N(t)
Z) > 2ci

b f
as a sufficient

condition that a strategic Y always disrecommends. Due to b f � ci, this condition is
fulfilled for virtually every belief of Y . Consequently, strategic entities decide to disrec-
ommend under most circumstances.

The desirable outcome of above analysis is based on the two key concepts of our ap-
proach. On the one hand, the recommendation model ensures that disrecommendations
are only possible for transactions in which a defection actually occurred. By this means,
the disrecommendation game is only played by a pair of entities that had a conflict dur-
ing their transaction. On the other hand, the belief model is exploited twice. First, the
prescription of belief revision yields the comparative benefit of disrecommending first
and minimal disrecommendation costs. Second, the solution of the disrecommendation
game is based on the presence of normative entities that are pre-committed to norm
abidance.

5.2 Simulative Quantification of the Compliance Costs

According to Section 2.3, an entity decides to remain normative as long as the costs
of complying with the norms do not exceed the costs of tampering the original system
software. In the following, we simulatively quantify the compliance costs in order to
assess under which circumstances normativeness is a rational choice.

We have implemented our approach in DIANEmu [21]. The most important aspects
of the simulation setting are as follows6: (1) Benchmark: The system consists of 100
entities. The number of normative entities varies between 20% and 95%. No a priori
knowledge exists among the entities. Each entity obtains between 5 and 25 opportu-
nities to choose its transaction partner among 2 entities. The transaction value is dis-
tributed uniformly in [0.5,1.5]. The probability of unintended defection by any peer is
5%. (2) Configuration of normative entities: The estimation of the conditional proba-

bilities are set by κ = 0.5 and p(u)
X (γ) = 0.05. (3) Configuration of strategic entities: A

strategic entity defects if its transaction partner executes its action first. In such cases,
the defected transaction partner is disrecommended whenever possible. (4) Metric: The
compliance costs are defined as the difference between the average utility of strategic
and normative entities.

Figure 3 shows the simulation results. It appears that the compliance costs tend to
decrease for an increasing number of transactions or an increasing ratio of normative
entities. We interpret the results by making three quantitative conclusions: (1) Irrespec-
tive of the setting, the compliance costs never exceed 6, which is the equivalent value
of defecting in 6 transactions. Therefore, a human principal runs the original version of
the system software if his tampering costs outweigh the benefits of defecting 6 times.
(2) Irrespective of the number of transactions, the compliance costs become negative
for a sufficient high ratio of normative entities. In such cases, an average normative
entity outperforms an average strategic entity. Since tampering costs are non-negative,

6 Due to space limitations, we describe the setting in detail in a technical appendix. It is available
at http://www.ipd.uka.de/∼obreiter/iTrust05techApp.pdf

28 P. Obreiter and B. König-Ries

-12

-9

-6

-3

0

3

6

20% 35% 50% 65% 80% 95%

5
10
15
20
25

Transaction
Opportunities

per Entity

Ratio of
normative entities

Compliance
Costs

Fig. 3. The costs of complying with the norms

the system becomes completely normative if the ratio of normative entities exceeds a
certain threshold (between 35% and 60% depending on the number of transactions). (3)
Based on the first two points, we are able to interpret the overall system’s dynamics: A
fully normative system is in an equilibrium state. The equilibrium is very stable since
norms are self-enforcing unless 40% of the entities (or even 80% for tampering costs
beyond 6) are irrationally tampered.

6 Conclusion

Distributed reputation systems provide a means for restricting misbehavior in self-
organizing systems of autonomous entities. Previous work has suggested the inclusion
of hard evidence and norms into distributed reputation systems. In this paper, we have
justified why system design should make use of norms. The presence of norms has led
us to the distinction of normative and strategic entities. We have shown that existing
distributed reputation systems cannot make use of the additional information provided
by hard evidence and norms. We have made up for these deficiencies by redesigning
distributed reputation systems. For the integration of hard evidence, we have suggested
a novel recommendation model that is built on three types of recommendations. Fur-
thermore, we have provided a multi-layered belief model that incorporates type beliefs.
By this means, we are able to capture different types of informational input. We have
considered in detail the mapping of type beliefs to behavioral beliefs and the revision
of type beliefs based on behavioral information. The analysis of the disrecommenda-
tion game has shown that all entities issue disrecommendations regarding transactional
behavior whenever they are able to do so. Finally, we have demonstrated simulatively
that cooperative behavior is self-enforcing if the ratio of normative entities is at least
moderate.

In the future, we aim at integrating a means of bailing for another entity’s norma-
tiveness [7]. In this context, we will investigate how the availability of hard evidence
regarding such bails influences belief formation and self-recommendations. Further-
more, we plan to compare simulatively the properties of our system with other existing
distributed reputation systems.

A New View on Normativeness in Distributed Reputation Systems 29

References

1. Buchegger, S., Boudec, J.Y.L.: A robust reputation system for P2P and mobile ad-hoc net-
works. In: Second Workshop on the Economics of Peer-to-Peer Systems. (2004)

2. Despotovic, Z., Aberer, K.: A probabilistic approach to predict peers’ performance in P2P
networks. In: 8th Intl Workshop on Cooperative Information Agents (CIA’04). (2004)

3. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust algorithm for reputation
management in P2P networks. In: WWW2003. (2003)

4. Castelfranchi, C., Conte, R., Paolucci, M.: Normative reputation and the costs of compliance.
Journal of Artificial Societies and Social Simulation 1 (1998)

5. Obreiter, P.: A case for evidence-aware distributed reputation systems. In: Second Inter-
national Conference on Trust Management (iTrust’04), Oxford, UK, Springer LNCS 2995
(2004) 33–47

6. Obreiter, P., Nimis, J.: A taxonomy of incentive patterns - the design space of incentives for
cooperation. In: Second Intl. Workshop on Agents and Peer-to-Peer Computing (AP2PC’03),
Springer LNCS 2872, Melbourne, Australia (2003)

7. Obreiter, P., Fähnrich, S., Nimis, J.: How social structure improves distributed reputation
systems - three hypotheses. In: Third Intl. Workshop on Agents and Peer-to-Peer Computing
(AP2PC’04), To appear in post-proceedings, New York (2004)

8. Jurca, R., Faltings, B.: Towards incentive-compatible reputation management. In et al.,
R.F., ed.: AAMAS’02-Workshop on Deception, Fraud and Trust in Agent Societies, Springer
LNAI 2631 (2003)

9. Jones, P.: Software, reverse engineering and the law (2005) http://lwn.net/Articles/134642/.
10. Hoffman, I.: Derivative works (2002) http://www.ivanhoffman.com/derivative2.html.
11. Council of the European Communities: Software directive – council directive on the legal

protection of computer programs (91/250/EEC) (1991)
12. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static disas-

sembly. In: Proceedings of the 10th ACM Conference on Computer and Communication
Security. (2003) 290–299

13. Tuomela, R.: The Importance of Us: A Philosophical Study of Basic Social Norms. Stanford
University Press, Stanford, California (1995)

14. Mui, L., Halberstadt, A., Mohtashemi, M.: Notions of reputation in multi-agents systems: A
review. In: Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS’02), Bologna, Italy (2002)

15. Helton, J.: Uncertainty and sensitivity analysis in the presence of stochastic and subjective
uncertainty. Journal of Statistical Computation and Simulation 57 (1997) 3–76

16. Bacchus, F.: Probabilistic belief logics. In: Proceedings of European Conference on Artificial
Intelligence (ECAI-90). (1990) 59–64

17. Josang, A., Ismail, R.: The beta reputation system. In: 15th Bled Conference on Electronic
Commerce, Bled, Slovenia (2002)

18. Kinateder, M., Rothermel, K.: Architecture and algorithms for a distributed reputation sys-
tem. In Nixon, P., Terzis, S., eds.: Proc. Of the First Intl. Conf. On Trust Management
(iTrust), Heraklion, Greece, Springer LNCS 2692 (2003) 1–16

19. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In Allen, J.,
Fikes, R., Sandewall, E., eds.: 2nd Intl Conference on Principles of Knowledge Representa-
tion and Reasoning, Morgan Kaufmann, CA, USA (1991) 473–484

20. Rasmusen, E.: Games and Information : An Introduction to Game Theory. Oxford Blackwell
(1989)

21. Klein, M.: DIANEmu – a java-based generic simulation environment for distributed proto-
cols. Technical Report 2003-7, Universität Karlsruhe, Faculty of Informatics (2003)

A Trust Management Scheme in Structured P2P
Systems

So Young Lee, O-Hoon Kwon, Jong Kim, and Sung Je Hong

Department of Computer Science & Engineering,
Pohang University of Science and Technology

{soyoung, dolphin, jkim, sjhong}@postech.ac.kr

Abstract. Since there is no method to verify the trustworthiness of
shared files in P2P file sharing systems, malicious peers can spread un-
trustworthy files to the system. In order to prevent untrustworthy files
from spreading, we propose an effective trust management scheme using
peer reputation and file reputation together in a DHT-based structured
P2P systems. Simulation results show that the proposed scheme effec-
tively restrains the spreading of untrustworthy files even in cases where
malicious peers change their identities. Simulation results show that the
overall message cost for managing trust data is relatively low. We also
propose a replication scheme so as to avoid the loss or corruption of trust
data.

1 Introduction

In P2P systems, since no peer has the power or responsibility to monitor and
restrain the others’ behavior, there is no method to verify the trustworthiness
of shared files. Therefore, malicious peers can spread untrustworthy files such
as fake files that cheat their contents and corrupted files that infect systems or
leave back doors in systems with viruses like the VBS.Gnutella [4] in Gnutella
and W32.Supova.Worm [5] in Kazaa. In order to prevent these files from spread-
ing without the help of any powerful central authorities, it is necessary that
peers themselves judge the reliability of other peers based on their experience
and share the judgments with all other participants. One way to help the peers
share their experience is through the use of a reputation system. Generally, a rep-
utation system receives, aggregates, and provides feedbacks about participants’
past behavior. The feedbacks help participants decide whom to trust, encourage
trustworthy behavior and deter dishonest people from participation [12]. One
successful example of a reputation system is eBay [1]. In eBay, since individu-
als as well as companies can sell products, there exist many unknown entities.
People who purchased products before can leave feedback about the seller so
that others can refer to their opinion. A P2P reputation system is similar to
the eBay reference system, but there are some design considerations that are
different from general reputation systems [10].

Change of Identity. In the real world, changing someone’s identity is very
complicated since the identity is strongly connected with the owner. In P2P

Z. Despotovic, S. Joseph, and C. Sartori (Eds.): AP2PC 2005, LNAI 4118, pp. 30–43, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Trust Management Scheme in Structured P2P Systems 31

systems, however, the identifier of a peer has no relation with its owner and there
is no restriction to change. For this reason a participant with a low reputation
can change its identifier and rejoin the system as a newcomer. If the reputation
information is only recorded based on an easily changeable identifier, it is hard
to prevent malicious peers from feigning innocence. In this paper we use the
reputation information of files which is more difficult to change than that of
peers. By using file reputation information, we can preclude a malicious peer from
spreading an identical untrustworthy file again just by changing its identifier and
rejoining the system.

Storage of the reputation information. An important consideration for a
P2P reputation management system is where to store the reputation information.
There are two choices, local storage or global storage. The reputation system
using local storage works as follows. Peer A can store its experience against peer
B only in its local storage, and when others ask ”What do you know about peer
B?”, it answers them based on his stored information. It is a very simple and
traditional way for people to learn the reputation of others. But, if you want to
know someone more objectively, you must ask as many people as possible. This
is also applied in the case of using local storage. If a peer wants more objective
reputation about another peer, it must ask many peers. This will generate a
lot of messages in P2P systems. Whenever reputation information is required an
aggregating process must be performed, which produces the overhead of handling
many messages. Also, if a peer is not on-line when the reputation information is
needed, the information of the peer is not reflected. Thus in this paper we propose
to use global storage where others can easily access reputation information and
it is still available when an evaluator is not on-line. To manage distributed data
more efficiently, we use DHT-based structured P2P networks.

Integrity of the reputation information. The integrity of reputation infor-
mation will be the most important characteristic that is directly connected with
the reliability of the system. A reputation system based on P2P has to guarantee
two kinds of integrity. First, the evaluation itself should be reliable. The reputa-
tion system should prevent malicious peers from polluting it by giving a positive
evaluation to an untrustworthy file or a negative evaluation to a trustworthy file.
To prevent this, we confirm whether the evaluator is trustworthy or not before
applying the evaluation. Secondly, when the reputation data is stored and re-
trieved, it should not be altered. The system should keep malicious peers from
modifying the reputation information to raise their own reputation or just to
subvert the system. Whether a peer stores its own reputation or others, it must
give unchanged information to the requester who wants to use it. If some part
of the system is forged, it must not affect normal system behavior. To prevent
this kind of malicious behavior, we propose a replication scheme.

In this paper, we propose a trust management scheme in DHT-based struc-
tured P2P systems. We use the term reputation to mean the trustworthiness of
peers and files. The proposed trust management scheme has three characteristics.
First, it uses file reputation information as well as peer reputation information.

32 S.Y. Lee et al.

Second, the system uses a global storage for reputation information. Third, the
system uses a replication of reputation information for integrity and availability.
Although there are many application areas for P2P such as instant messaging
and distributed computing, we just consider file sharing applications which are
the most popular.

This paper is organized as follows: We describe the proposed system model
in Section 2 and the reputation management protocol in Section 3. We explain
a replication scheme for the integrity of the reputation information in Section 4.
Then, we show the simulation results in Section 5. Related works and their
differences with our work are discussed in Section 6. Finally, we summarize this
paper and give concluding remark in Section 7.

2 System Model

In this section, we describe the overall system model and assumptions of our
proposed trust management scheme.

2.1 Storing Reputation Information

As we mentioned earlier, we use global storage to store the reputation informa-
tion. The global storage is virtual and is actually partitioned into several small
parts stored in all peers. That is, every peer equally manages some parts of the
whole reputation information.

The peer that is responsible for specific reputation information is determined
with a hash function with O(1) time. The location of the responsible peer is
found using a Distributed Hash Table (DHT) within O(logN) time in the case
of Chord [14]. We will explain the proposed system based on Chord [14], which
is a very widely cited DHT-based structured P2P networks. Although we use
Chord as the base architecture, the proposed reputation scheme can be applied
to other DHT-based structured P2P networks.

2.2 Identifiers

Every peer that takes part in the system has a unique identifier IDpeer which
is the hash value of the peer’s IP address or the digest of a public key. In our
scheme, each shared file also has two identifiers, a key identifier IDkey and a
content identifier IDcontent. IDkey is generated by hashing the file name and used
as a keyword argument name in searching. And additional identifier, IDcontent

is generated by hashing its contents and used to identify files with the same
content. Since several versions of files exist with the same keyword, IDcontent is
used to treat these versions differently. In Chord, IDpeer is used to determine
the position of a peer on the identifier circle and the file indexes that it should
take care of. For the reputation management, IDpeer is used to determine the
file reputation manager and double hash value of IDpeer , Hash (IDpeer), is used
to determine the proper peer reputation manager. Like other DHT-based P2P
system, IDkey should be one in the same name space with IDpeer .

A Trust Management Scheme in Structured P2P Systems 33

2.3 Roles of Peer

In our scheme, every peer has the following five roles: File Provider, File Con-
sumer, File Index Manager, File Reputation Manager, Peer Reputation Man-
ager. Every participant in P2P file sharing system is basically a file provider
and a file consumer. Since we assume the use of DHT-based structured P2P
networks, every peer is responsible for some part of the file index information.
We call this role a file index manager.

The remaining two roles, a file reputation manager and a peer reputation
manager, are related to the reputation management. As a file reputation man-
ager and a peer reputation manager, every peer takes care of the reputation
informations of files and peers, respectively. In our scheme, the peer that has the
role of a file index manager for a given file also takes the role of a file reputation
manager. Since two roles are performed by the same peer for a given file, the file
index information and the file reputation information can be obtained by one
search query. This reduces the number of messages needed to get the reputation
of the files. A peer reputation manager manages the reputation information of
other peers whose Hash(IDpeer) matches with its identifier.

2.4 Repositories

Each peer has two separate repositories for reputation management. One is the
file repository to manage the reputation of files and the other is the peer reposi-
tory to store the reputation of peers. The file repository is organized as a table
with attributes (IDkey, IDcontent, file reputation (positive, negative), file owners,
description). The repository stores the information of files including reputation
information and the owners using two keys, IDkey and IDcontent. The files with
same IDkey and same IDcontent share the same row in the table. The file repu-
tation consists of two values: positive reputation which represents the number
of evaluations stating the file is trustworthy and negative reputation which rep-
resents the number of evaluations stating the file is not trustworthy. By making
the same files share the same reputation we can rapidly recognize widely spread
identical untrustworthy files and get the reputation information of the files re-
gardless of its owner. Assume that a malicious peer has got a low reputation
because of spreading an untrustworthy file X. Although a malicious peer can
change its IDpeer to hide its low reputation and try to spread the identical un-
trustworthy file X again, the system can prevent the file from spreading since it
already knows that the file is not trustworthy. It also benefits in the case that a
newcomer shares a file O which has already received a high reputation. Since the
file O is already known trustworthy, we do not need to consider that the provider
is trustworthy or not. The table also maintains the list of owners, list of IDpeers
that have the file, and optional file descriptions including file name and file size.
As the index information and the reputation information exist in the same table,
we can obtain the two information together with one search query. Since the file
repository is modified from the DHT’s file index table by adding a reputation
column, our scheme can be applied to other DHTs without a great difficulty.

34 S.Y. Lee et al.

Table 1. File Repository

IDkey IDcontent File Reputation (+,-) List of file owners Description
K8 F1 (30,2) N5,N40 ”Music3”
K10 F4 (45,0) N20,N3 ”Music1”
K10 F10 (10,50) N19,N41 ”Music1”

Table 1 shows an example of file repository of a peer whose IDpeer is N10. Differ-
ent from the original DHT-based system, however, we can see that files F4 and
F10 which have same IDkey , K10, occupy different rows. The file whose IDcontent

is F4 that is provided by N20 and N3 has a positive reputation 45 and nega-
tive reputation 0. By its reputation, this file is very trustworthy. But, file F10
that has the same IDkey but different IDcontent has positive reputation 10 and
negative reputation 50, and so it is not trustworthy. The peer repository is also
organized as a table with attributes ((Hash (IDpeer), positive reputation, nega-
tive reputation). It stores the reputation of a peer whose Hash(IDpeer) matches
with its IDpeer . In our scheme, the reputation of a peer is the summation of
the reputation of files that it has provided. Like the file reputation, it consists
of positive reputation and negative reputation. The positive value means how
many times trustworthy files the peer has provided and negative value means
how many times untrustworthy files it has provided. To prevent repositories from
being large, each manager deletes the rows that are not referenced or updated
in a pre-determined interval (e.g., 1 month).

3 The Reputation Management Protocol

We explain how our proposed scheme works based on the steps of file sharing
system. These steps consists of the following phases: Join and Publish, Query
and Response, Download and Evaluation, Update Repositories.

3.1 Join and Publish

In this phase, a peer joins the system and publishes its files to the system. When
a peer joins the system, peer identifier IDpeer is assigned and each shared file
gets two identifiers such as IDkey and IDcontent. A peer publishes its file by send-
ing publish messages to the file reputation manager: Publish (IDkey, IDcontent,
IDpeer, description). The file reputation manager received the publish message
updates its file repository. If the repository does not contain the information
of published file, the manager adds a new row to its repository and assigns the
initial reputation values, positive value 0 and negative value 0. If the information
already exists in the repository, the manager just adds the IDpeer value to the
list of owner.

As shown in Figure 1, peers N10 and N20 both publish a file whose name is same
as ”Music1” but whose contents are different. Since the two files have the same
name they are assigned the same IDkey and published to the same file reputation

A Trust Management Scheme in Structured P2P Systems 35

N0

N3

N7

N12

N15

N17

N20

N23

N26

N10

IDcontentIDkey

F 6K3 N7 N2030, 2 "Music1",

N3 N6F 7 3, 37 "Music1",

N10F 10 0, 0 "Music1"

F 30K1 N20

F 8K2 N13

IDpeerH()

N20 46 4

H(N20) = N 17

IDpeerH()

N10 3 77

H(N10) = N 26

3 10

File reputation repository of N 3

Peer reputation repository of N17

Peer reputation repository of N26

Reputation Owners Description

6, 20

5, 2

"Movie1"

"Document1"

Positive Negative

Positive Negative

Publish(K , F , N , "Music1")

Publish(K , F , N , "Music1")

3 6

10

20

Fig. 1. Join and Publish

manager N3. The manager N3 updates its repository using the received message.
The file of N10 is a newly appeared one because no entry matches its two identifiers,
K3 and F10. Thus, N3 adds a new row with reputation value (0,0) and file owner
N10. Whereas, the file of N20 with K3 and F6 already exists in the repository. Its
reputation is positive 30, negative 2 and the other peer N7 also has the identical
file. In this case, N3 just adds N20 to the list of owner.

3.2 Query and Response

In this phase, a peer sends a search query to find a desired file and receives a
filtered response from the manager. The peer searches the file by sending a query
message to the appropriate file reputation manager: Query (IDkey). The file
reputation manager that received the query message makes a response through
the following procedure. The manager retrieves candidates that have the same
IDkey from its repository. The candidates are classified into 3 levels by their file
reputation: trustworthy, unknown, untrustworthy. The reputation level of each
file is decided by the following two conditions.

|Positive|+ |Negative| >= T (1)

Positive

|Positive| + |Negative| >= P (2)

The two parameters, T and P, are system-wide parameters. The parameter T
is a data confidence threshold, which represents the minimum number of evalu-
ations required and P is a trust threshold, which represents the ratio of positive
evaluations. The files that do not satisfy Condition (1) are classified as unknown.

36 S.Y. Lee et al.

Namely, the number of evaluations are not enough to decide whether the file is
trustworthy or not. The files which satisfy Conditions (1) and (2) are classified
as trustworthy. These files have been evaluated enough times and are perceived
as trustworthy. Whereas, the files which satisfy Condition (1) but do not satisfy
Condition (2) are classified as untrustworthy. The file reputation manager only
includes trustworthy and unknown files in the response and hides the existence
of the untrustworthy files from the user. The file reputation manager sends the
response message to the requester:Response (list of {IDkey, IDcontent, list of file
owners, level, description}).

In Figure 1, if N3 has received a query to search K3, it can find that there are
three different version of files whose IDcontent are F6, F7 and F10 with same key
identifier K3. When we assume P is 0.8 and T is 10, among them the manager only
includes file F10 (classified as unknown) and file F6 (classified as trustworthy).

3.3 Download and Evaluation

In this phase, a peer selects, downloads, uses a file and evaluates the trust-
worthiness of the provider and the file. The peer received the Response selects
one among the files in the Response. When the peer selects a file whose level
is trustworthy, it randomly selects one of its providers. When it chooses a file
whose level is unknown, it estimates the file reputation by referencing its owner’s
reputation. To keep malicious peers from modifying untrustworthy files and re-
publishing them as new, the peer queries the reputation of the owners. If the file
is provided by several owners, the peer can take an average value, a maximum
value or a minimum value of several file owner’s reputation as the file reputation.
If the reputation of the file owner is low, the file is excluded from the selection.

After downloading and using the selected file the peer evaluates its trustwor-
thiness as positive or negative and sends the evaluation to the file reputation
manager. The evaluated value is also sent to the peer reputation manager of the
provider. If the file gets positive reputation, the peer provided the file also gets
the same value.

3.4 Update Repository

In this phase, the evaluations of previous phase are applied in the system. The
file reputation manager and the peer reputation manager received the evaluation
data update their file and peer repositories, respectively. Malicious evaluators,
however, can forge the reputation value by giving positive evaluation to an un-
trustworthy file or giving a negative evaluation to a trustworthy file. To prevent
this, every reputation manager confirms whether the evaluator is trustworthy or
not before updating the value.

When a reputation manager receives an evaluation data from evaluator, it
hashes the evaluator’s IDpeer and queries the peer reputation manager of the
evaluator by sending QueryPeer message: QueryPeer (Hash(IDpeer)). The peer
reputation manager received the QueryPeer message searches its peer reposi-
tory, calculates the level of peer reputation like file reputation and sends the

A Trust Management Scheme in Structured P2P Systems 37

ResponsePeer (Hash(IDpeer), level) to the requester. The opinion of the evalua-
tor is treated differently depending on the evaluator’s reputation. If the level of
evaluator’s reputation is trustworthy, the manager updates the reputation value
of the corresponding file and peer. And if the level is untrustworthy, the value is
not reflected in the repository. If the level is unknown, only a partial value, e.g.
a half of its trustworthiness is reflected. Through reflecting the opinion of the
unknown peer relatively less than that of the trustworthy peer, we can reduce
the probability of polluting the repositories.

4 Replication

The proposed scheme prevents malicious peers from fabricating their own reputa-
tion by choosing reputation manager other than themselves. But, the possibility
of forging the reputation of others in order to subvert the system still exists.
As we mentioned earlier, this is an important problem that harms the integrity
and usefulness of the reputation system. In addition, since joining and leaving
of peers occur frequently in P2P systems, it is possible that peers could leave
the system without handing over their repositories to other proper peers. If a
peer leaves the system silently, the information that it has managed is lost. To
prevent these two problems – information loss caused by a silently disappearing
peer and information pollution caused by a malicious peer, we replicate the repu-
tation information to multiple peers. There are some works reported previously
on replication schemes [11, 9, 15]. The difference among them is how to select
multiple replication peers. Ratnasamy et al. [11] used k different hash functions
to select peers and other works [9, 15] used neighbors of the responsible peer in
the identifier space. Unlike the previous works, we use replicated data for load
balancing as well as backup. If identical data exists in multiple positions of the
identifier space, it is more efficient to use the nearest one. We explain the repli-
cation scheme based on Chord. As shown in Figure 2, two replication sets exist.
Each set consists of a replication root, which is shown as a black oval, and its
k successors in the identifier space. k is a tolerance parameter and at least k/2
peers must work correctly.

The first replication root is the original responsible peer that is determined
by the hash function. Assume that the system has m-bit identifier space. The
second replication root is determined by adding 2m−1 to the binary value of first
replication root’s identifier. Since Chord is based on ring topology, the second
replication root becomes the symmetric position of the first. A peer that wants
to retrieve data computes the identifiers of two replication roots and chooses
the nearest one. If the first replication root is near the requesting peer, it sends
queries to the first replication root and its k neighbors independently and re-
ceives k responses. Among k responses, the peer takes the majority value as
the result. Updating data is similar to the retrieve case. So a peer sends up-
date messages independently to k peers. Since peers send messages to one of
the nearest replication sets, two replication sets must synchronize themselves.
Whenever peers receive an update message, they send it to the k other replicated

38 S.Y. Lee et al.

Replication Root

Peer A

synchronize

Peer B
Member of Replication Set

nd2 Replication Set

st1 Replication Set

Fig. 2. Replication

peers independently. Since we assume more than k/2 peers work properly, the
other replicated peers receive more than k/2 update messages. If peers receive
more than k/2 identical update messages from the other set, they update their
repositories.

By using peers in the symmetric position as the replication set, we can divide
the Chord-ring into two. Therefore, it reduces the distance over which the mes-
sages are delivered by half. In Chord, the symmetric position is the last entry
of the finger table (routing table) [14]. Since each peer periodically exchanges
message with the entries of the routing table to maintain correct routing infor-
mation, the synchronization process does not create much load.

5 Performance Evaluation

We have performed two experiments to show that our proposed scheme effec-
tively reduces the untrustworthy downloading rate with low message overhead.
The first experiment evaluates the effect of the reputation system in trust man-
agement and the overall message overhead caused by managing the additional
reputation data. In first experiment, we have assumed that malicious peers con-
tinuously conduct bad behavior without changing their identifier. But in the
second experiment, malicious peers change their identities periodically to hide
their malicious behavior. The second one shows the effect of using peer and file
reputation together compared to only using peer reputation.

5.1 Simulation Environments

For the simulation, we have implemented three types of P2P file sharing system
on Chord : Normal-System, PeerRep-System, PFRep-System.

A Trust Management Scheme in Structured P2P Systems 39

– Normal-System means a normal DHT-based P2P file sharing system which
does not use any reputation scheme. In this system, a peer sends a query
using the Chord algorithm and receives the list of providers for the requested
file. Then, the provider is chosen randomly.

– PeerRep-System means a DHT-based p2p system which adopts only the peer
reputation scheme. Only the reputation informations of peers are managed
by other peers. A peer sends a query using the Chord algorithm like Normal-
System and also receives the list of providers of the requested file. But, in
this system, a peer selects a file and a provider by the reputation of the
provider. If the reputation of provider is high, its file is selected.

– PFRep-System means a DHT-based p2p system which uses our proposed
reputation scheme. The reputation informations of peers and files are man-
aged by peer reputation manager and file reputation manager, respectively.
A peer also sends a query like others and receives file reputation information
and file index information together. Using file reputation information, peers
select a trustworthy file. If file reputation information is insufficient, they
reference the peer reputation information.

The experiments are performed under a static P2P network with 1,000 peers.
The percentile of malicious peers and files are from 5% to 20%. Initially, every
peer has 5 different kinds of files. Each peer shares the downloaded file again
when the file and the peer are both untrustworthy or both trustworthy. We have
presumed that malicious peers only have untrustworthy files and give a negative
reputation to the trustworthy file to subvert the system and trustworthy peers
only have the trustworthy files and act correctly. We used the rate of downloading
untrustworthy files among total downloading as a metric.

5.2 Simulation Results

Based on the above environment, we have performed two experiments and com-
pared three systems. In the first experiment, we measured the rate of untrust-
worthy file downloads and the message overhead in case that malicious peers do
not change their identities. Figure 3 and Figure 4 show the results of the first
experiment.

Figure 3 shows the rate of untrustworthy downloads when the rate of malicious
peers is 10%. The x-axis represents the total number of downloads performed by
peers and the y-axis represents the rate of malicious downloads among the total
downloads. We can see that the rate of untrustworthy downloads decreases grad-
ually as the total number of downloads increases. Although all peers and files
are started with unknown reputation state, the system learns the reputation of
peers and files as the number of downloads increases. The result shows that two
systems adopted reputation scheme, PFRep-System and PeerRep-System, effec-
tively restrain the untrustworthy downloads and the PFRep-System is slightly
better than the PeerRep-System. Whereas, the Normal-System continuously suf-
fered from untrustworthy downloads.

Figure 4 shows the number of generated messages in the first experiment.
The number of messages which is generated in the same interval is represented

40 S.Y. Lee et al.

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16 18 20

R
at

es
 o

f u
nt

ru
st

w
or

th
y

do
w

nl
oa

ds
 (

%
)

Number of donwloads(*1,000)

Normal-System
PeerRep-System

PFRep-System

Fig. 3. Rate of untrustworthy downloads

 9

 10

 11

 12

 13

 14

 15

 16

 0 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 g

en
er

at
ed

 m
es

sa
ge

s
(lo

g
sc

al
e)

Number of donwloads(*1,000)

Normal-System
PeerRep-System

PFRep-System

Fig. 4. Number of generated messages

in log scale. Only the messages used in searching file and managing reputa-
tion informations are reflected. PFRep-System initially generates many messages
like PeerRep-System since the file reputation data is not enough to decide the
trustworthiness of file. However, after the system gathers enough reputations
PFRep-System does not create many messages since the reputation information
is carried with a search query. Additional generated messages are used to update
the reputation data and query peer reputation for unknown files.

The second experiment is similar to the previous one except that malicious
peers change their identifiers periodically. After every 2,000 downloads are per-
formed, all malicious peers change their identity and pretend to be new-comers.

A Trust Management Scheme in Structured P2P Systems 41

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16 18 20

R
at

es
 o

f u
nt

ru
st

w
or

th
y

do
w

nl
oa

ds
 (

%
)

Number of donwloads(*1,000)

Normal-System
PeerRep-System

PFRep-System

Fig. 5. Rate of untrustworthy downloads when allowing malicious peers to change their
identity at every 2,000 downloads

Figure 5 shows the result of the second simulation. We can see that the rate of
untrustworthy downloads are only decreased in PFRep-System. In the PeerRep-
System, since the reputation information is only referenced by the IDpeer , chang-
ing identities by malicious peers makes the reputation system useless. But, since
PFRep-System still keeps the reputation information based on the files, chang-
ing identities does not influence the system. That is, the proposed scheme works
better in preventing untrustworthy files from spreading than existing systems
even in cases where malicious peers change their identities.

6 Related Works

There have been several studies addressing managing reputation on P2P net-
works. These studies can be classified into unstructured or structured according
to the base architecture of P2P networks.

Because many famous P2P file sharing applications [3, 2] are implemented on
unstructured P2P networks for practical reason, most previous works [7, 8, 13]
about reputation management systems are based on unstructured P2P networks.
Among them, Xrep [7] is similar to ours in terms of using combined reputations
of peers and resources to recognize untrustworthy resources regardless of its
provider. But, it has several weak points. First, it creates too many messages
and is not scalable since it gathers opinions about resources and peers using a
distributed polling algorithm. Second, it does not use the reputation information
effectively since it does not use the reputation information on selection but only
use it for verifying the selection. Third, it lacks a reliable method to verify the
trustworthiness of voters.

42 S.Y. Lee et al.

Recently, several reputation systems in structured P2P networks have been
proposed. EigenTrust [8] and PeerTrust [16] are reputation management systems
in structured P2P networks such as CAN [11] and P-Grid [6], respectively. In
EigenTrust, each peer has multiple score (reputation) managers that are deter-
mined effectively by using CAN characteristics. However, since a peer’s trust
value is computed using the trust value of the neighbors of the requester, the
computed trust value is different according to the requester. To get a unique
global value from any starting position in the system it must contact lots of
neighbors. Also, the normalizing technique used in EigenTrust makes it impos-
sible to distinguish between malicious peers and newly joined peers. But, the
notion of transitive trust and giving weights to trust peers according to its own
experience raises the integrity of the reputation system. PeerTrust also stores
the trust data in a distributed way using DHT and uses the trust manager that
is responsible for feedback submission and trust evaluation. But PeerTrust just
suggests an independent reputation system using DHT, we present more adapt-
able system by adding some columns to existing DHT structure. Since both of
them consider only the peer reputation, they can not prevent malicious peers
from changing their identities.

Our work differs from others in two aspects. First, we present detailed data
structures and algorithms to manage reputation information in DHT-based struc-
tured P2P networks. Our proposed scheme can be easily implemented to use in-
dex tables and routing protocols of DHTs. Second, we use file reputation and peer
reputation together unlike EigenTrust [8] and PeerTrust [16]. Therefore, we can
prevent untrustworthy files from spreading even in the case where malicious peers
change their identities.

7 Conclusion

We have presented an effective trust management scheme using file reputation
and peer reputation together in DHT-based structured P2P networks. The pro-
posed scheme can prevent untrustworthy files from spreading by checking file
reputation in addition to peer reputation. The proposed scheme could also pre-
vent them in cases where malicious peers change their identities. The scheme
used DHTs in order to store and retrieve reputation information in a scalable
and distributed way. Also, the scheme used replication of reputation informa-
tion for integrity and availability. Using simulation, we showed that the proposed
scheme works better in preventing untrustworthy files from spreading than ex-
isting systems even in cases where malicious peers change their identities.

Acknowledgments

This research was supported by the MIC(Ministry of Information and Commu-
nication), Korea, under the Chung-Ang University HNRC-ITRC(Home Network
Research Center) support program supervised by the IITA(Institute of Informa-
tion Technology Assessment).

A Trust Management Scheme in Structured P2P Systems 43

References

1. eBay homepage Http://www.ebay.com
2. Gnutella homepage Http://www.gnutella.com
3. Kazza homepage Http://www.kazaa.com
4. Vbs.gnutella worm Http://securityresponse.symantec.com/avcenter/venc/data/

vbs.gnutella.html
5. W32.supova worm Http://securityresponse.symantec.com/avcenter/venc/data/

w32.supova.worm.html
6. Aberer, K.: P-grid: A self-organizing access structure for p2p information sys-

tems. Proceedings of ACM Conference on Information and Knowledge Manage-
ment (CIKM) (2001)

7. Damiani, E., di Vimercati, D.C., Paraboschi, S., Samarati, P., Violante, F.:
Reputation-based approach for choosing reliable resources in peer-to-peer net-
works. Proceedings of the 9th ACM Conference on Computer and Communications
Security (2002)

8. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in p2p networks. Proceedings of the 12th International
World Wide Web Conference (2003)

9. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based
on the xor metric. Proceedings of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS’02) (2002)

10. Ooi, B.C., Liau, C.Y., Tan, K.L.: Managing trust in peer-to-peer systems using
reputation-based techniques. Proceedings of the International Conference on Web
Age Information Management (2003)

11. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. Proceedings of the ACM 2001 SIGCOMM Conference (2001)

12. Resnick, P., Zeckhauser, R., Friedman, E., Kuwabara, K.: Reputation systems.
Communications of the ACM, 43(12):45-48 (2000)

13. Selcuk, A., Uzun, E., Pariente, M.: A reputation-based trust management system
for p2p networks. Proceedings of the International Workshop on Global and Peer-
to-Peer Computing, IEEE/ACM CCGRID (2004)

14. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able Peer-To-Peer lookup service for internet applications. Proceedings of the 2001
ACM SIGCOMM Conference (2001)

15. Vishnumurthy, V., Chandrakumar, S., Sirer, E.: Karma: A secure economic frame-
work for peer-to-peer resource sharing. Proceedings of the Workshop on Economics
of Peer-to-Peer Systems (2003)

16. Xiong, L., Liu, L.: Peertrust: Supporting reputation-based trust for peer-to-peer
electronic communities. IEEE Transactions on Knowledge and Data Engineering
16(7), 843–857 (2004)

Incentive-Compatibility in a Distributed
Autonomous Currency System

Kenji Saito1, Eiichi Morino2, and Jun Murai3

1 Graduate School of Media and Governance, Keio University
5322 Endo, Fujisawa

Kanagawa, 252-8520 Japan
ks91@sfc.wide.ad.jp

2 Gesell Research Society Japan
3 Faculty of Environmental Information, Keio University

Abstract. Peer-to-peer complementary currencies can be powerful tools
for promoting exchanges and building sustainable relationships among
selfish peers on the Internet.

i-WAT[1] is a proposed such currency based on the WAT System, a
polycentric complementary currency using WAT tickets as its media of
exchange. Participants spontaneously issue and circulate the tickets as
needed, whose values are backed up by chains of trust. i-WAT implements
the tickets electronically by exchanging messages signed in OpenPGP.

This paper claims that the design of i-WAT is incentive-compatible
as to protection against moral hazards, or threats caused by selfish peers
because they may take advantage of the rules; such hazards are defused
in i-WAT if the participants react against misbehaviors of others by
pursuing their own benefits.

A reference implementation of i-WAT has been developed in the form
of an XMPP instant messaging client. We have been putting the currency
system into practical use since June 2004.

1 Introduction

Exchanging is a necessary building block of peer-to-peer (P2P) systems, which
can potentially harness the under-utilized power of the network of computers
connected one another via the Internet. Since the resources are distributed over
autonomous entities, such exchanging needs to be performed in an incentive-
compatible[2] way: the coordination must be accomplished by collection of selfish
behaviors. A medium of exchange which represents a guaranteed value should
take an important role in the design of P2P systems.

Money is a well-known medium of exchange, but its scarcity has caused a
lot of problems. Complementary currencies, or alternative forms of monetary
media, have been proposed and tested in real life to achieve an autonomous,
sustainable local economy even in short of money. There have been successful
cases, such as experiments in Wörgl in 1932 (stamp money[3]), in Comox Valley
in 1983 (LETS[4]) and in Ithaca since 1991 (Ithaca HOURs[5]).

Z. Despotovic, S. Joseph, and C. Sartori (Eds.): AP2PC 2005, LNAI 4118, pp. 44–57, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Incentive-Compatibility in a Distributed Autonomous Currency System 45

Those complementary currencies are used to support values which are not
readily circulated in today’s economy, such as volunteer works or skills that
are not regularly utilized. Translating them onto the Internet would benefit the
design of P2P systems, which are also intended to make use of under-utilized
resources. But then, those currencies also need to be peer-to-peer.

We proposed i-WAT[1] in year 2003 as such a currency usable on the Inter-
net, based on the WAT System[6]. The WAT System is a system of polycentric
complementary currencies using WAT tickets as its media of exchange. A WAT
ticket is like a bill of exchange, but without a specified redemption date or place.
i-WAT implements the tickets electronically by exchanging messages signed in
OpenPGP. It has been put into practical use since June 2004.

This paper begins by describing the core design and the trust/incentive mod-
els of i-WAT. It then shows, by a game-theoretical analysis, that the design of
i-WAT is incentive-compatible as to protection against moral hazards: taking
advantage of the rules will result in the subject’s confrontation to an uncontrol-
lable risk. Since i-WAT has no fixed authority, such risks are imposed by rational
behaviors of other participants. The hazards in concern will include impostors,
unintentional breach of trust and collusions.

2 WAT/i-WAT Currency System

2.1 The WAT System

Overview. The WAT System[6] is a complementary currency designed by Eiichi
Morino, a coauthor of this paper. It has been used broadly, especially in Japan,
since its introduction in August 2000.

A WAT ticket, a physical sheet of paper resembling a bill of exchange, is used
as the medium of exchange in the system. A lifecycle of a WAT ticket involves
three stages of trading as illustrated in Fig. 1:

1. Issuing – the birth of a WAT ticket
A drawer issues a WAT ticket by writing on an empty form the name of the
provider (lender) of the goods or service, the amount of debt1, the present
date, and the drawer’s signature. The drawer gives the ticket to the lender,
and in return obtains some goods or service.

2. Circulation – ordinary exchange
The person to whom the WAT ticket was given can become a user, and use
it for another trading. To do so, the user writes the name of the recipient, as
well as their own, on the reverse side of the ticket. The recipient will become
a new user, repeating which the WAT ticket circulates among people.

3. Redemption – the return of the WAT ticket
The WAT ticket is invalidated when it returns, as a result of a trade, to the
drawer.

1 Typically in the unit kWh, which represents cost of producing electricity from natural
energy sources.

46 K. Saito, E. Morino, and J. Murai

Fig. 1. Three stages of trading with a WAT ticket

Distinctive Features of the WAT System

Autonomy. Anyone can spontaneously become a member of the WAT System
with a sheet of paper if they follow the above protocol.

Compatibility. A WAT ticket is compatible with any other WAT tickets in the
world, so that the currency system is operable globally, as long as the drawer
can be credited.

Extensibility. The protocol illustrated in Fig. 1 defines the WAT Core, the
essence of the WAT System. An extended part can be defined for a new cur-
rency based on the WAT System, stating, for example, the region, group and
duration in which the tickets are usable, as well as the unit in which the debt is
quantified.

Security. In case the drawer fails to meet their promise on the ticket, the lender
assumes the responsibility for the debt. If the lender fails, the next user takes
over. The responsibility follows the chain of endorsements. The longer the chain
is, the more firmly backed up the ticket is. Therefore the length of the chain of
endorsements represents the extent of trust the ticket has gained.

2.2 i-WAT: The Internet WAT System

Overview. i-WAT is a translation of the WAT Core onto the Internet. We have
made a reference implementation available, which has been used mainly by the
members of the WAT System.

In i-WAT, messages signed in OpenPGP (i-WAT messages) are used to im-
plement transfers of an electronically represented WAT ticket (i-WAT ticket).

An i-WAT ticket contains the identification number, amount of debt and pub-
lic key user IDs of the drawer, users and recipients. Endorsements are realized by

Incentive-Compatibility in a Distributed Autonomous Currency System 47

Fig. 2. Visual representation of an i-WAT ticket

Table 1. i-WAT messages

Message Sender Receiver Function

<draw/> drawer recipient (lender) draws an i-WAT ticket.
<use/> user recipient uses an i-WAT ticket.
<accept/> recipient drawer and user confirms readiness to accept the i-WAT

ticket once it is validated.
<reject/> recipient drawer or user∗ rejects an i-WAT ticket.
<approve/> drawer user and recipient validates an i-WAT ticket, and ap-

proves the transaction.
<disapprove/> drawer user and recipient denies an i-WAT transaction.

∗ depending on whether the ticket has just been issued or in circulation, respectively.

nesting PGP signatures. In our reference implementation, the chain of signatures
is visualized as illustrated in Fig. 2, using the PGP photo IDs.

Table 1 shows the types of i-WAT messages. All i-WAT messages are signed
by the senders, and are formatted in the canonical form of XML with nested
signatures. The messages cause state transfers of a ticket as illustrated in Fig. 3.

Upon translating the WAT Core onto the digital communication domain, we
have made the following changes from the state machine of a WAT ticket:

1. Trades need to be asynchronously performed. Intermediate states, such as
waiting for acceptance or approval, are introduced.

2. Double-spending needs to be prohibited. The drawer is made responsible for
guaranteeing that the circulating ticket is not a fraud. This means that every
trade has to be approved by the drawer of the involved ticket.

48 K. Saito, E. Morino, and J. Murai

* Gray arrows represent WAT state-transfer.
* Black arrows represent i-WAT state-transfer.

Fig. 3. State machine of a WAT/i-WAT ticket

Protocol

Issuing – the birth of an i-WAT ticket

1. The drawer sends a <draw/> message which contains the public key user
IDs of the drawer and lender, identification number and amount of debt. This
message becomes the original i-WAT ticket after the protocol is completed.

2. The lender sends back the content of the message as an <accept/> message.
3. The drawer sends an <approve/> message to the lender.

Circulation – ordinary exchange

1. The user adds to the i-WAT ticket the public key user ID of the recipient,
and sends it to the recipient as a <use/> message. This message becomes a
valid i-WAT ticket after the protocol is completed.

2. The recipient forwards the content of the message to the drawer and user as
an <accept/> message.

3. The drawer verifies the ticket, and sends an <approve/> message to the user
and recipient.

Redemption – the return of the i-WAT ticket

1. The user sends a <use/> message to the recipient, who equals the drawer.
2. The drawer verifies the ticket, and invalidates it as the debt is now redeemed.

The drawer sends an <approve/> message to the user.

Generalized Ticket Value. We have recently made a generalization to the
value of an i-WAT ticket such that it is expressed as a tetrad 〈V0, Vm, Vx, f〉

Incentive-Compatibility in a Distributed Autonomous Currency System 49

Fig. 4. i-WAT trust model

presented by the drawer, where V0 is the face value (initial value) of the ticket, Vm

is the minimum value, Vx is the maximum value, and f(t) is the differentiation
(derivative) of a function of time F (t). Vm/Vx are set to be ⊥/� respectively if
those values are not applicable.

The effective value Vt of a ticket at time t is given by the following equation:

Vt = min(max(
∫ t

0
f(t)dt + V0, Vm), Vx)

This is a generalization to allow the value of a ticket to vary over time, limited
by some minimum/maximum values. Typically, it holds that either f(t) = 0 for
all t (regular ticket), f(t) < 0 for all t (reduction ticket) or f(t) > 0 for all t
(multiplication ticket).

The incentive mechanism for reduction and multiplication tickets have been
discussed in [7] and [8], respectively.

3 Trust Model

Fig. 4 shows the trust model of i-WAT, which is a definition of mutually validating
relation v↔, where A v↔ B means that A and B validate the public keys of each
other.

To implement the model by dynamically building an appropriate web of trust,
[9] showed that it would suffice if the behaviors of participants satisfy the fol-
lowing three properties:

1. mutual signing by knowing, or any two mutual acquaintances sign the public
keys of each other,

2. mutual signing by participation, or the drawer and a user of an i-WAT ticket
sign the public keys of each other, and

3. mutual full trust by participation, or the drawer and a user of an i-WAT
ticket fully trust each other, and a recipient fully trusts the corresponding
user of a ticket, in the context of PGP public key signing.

50 K. Saito, E. Morino, and J. Murai

Software features to help automating mutual signing/full trust by participation
will be released in the near future.

4 Incentive Model

We model a series of trades with an i-WAT ticket as a sequential game with
incomplete information.

4.1 Notations and Preconditions

Participants. Users are denoted as W (for WAT friends) indexed by the order
of their appearance: drawer = W0, lender = W1, . . . , current recipient = Wn.
For the sake of argument, there assumed to be n + 1 unique participants, and
the webs of trust around them are built from scratch as transactions proceed.

Probability of Default. Probability pi devides Wi into two types: successful
(appears by probability 1 − pi) or failing (appears by probability pi) to redeem
the ticket in concern.

Timing of Usage. The time at which Wi uses the ticket is regarded i to simplify
reasoning. This means that the time is not evenly distributed in the model. Still,
for any reduction tickets, it holds that Vi < Vi−1, and for any multiplication
tickets, it holds that Vi > Vi−1, where i > 0.

Redemption takes place at time r.

Utility of Exchange. There assumed to be some utility of having an exchange
medium instead of having specific goods or unutilized services. This utility for
Wi is denoted as UXi.

UX0 is a special case, where the value is divided into utility of spending UXS
0

and utility of earning (redeeming) UXE
0 , to reflect the fact that these events are

not adjacent in the time line.

Cost of Trust. Cost to rebuild trust relationships for Wi is CTi. The cost
includes that of whitewashing, or that one disappears and assumes a new identity.
It is assumed that this cost does not vary in a large extent among participants,
and is generally worth more than a value of a ticket. These assumptions should
be justified by the fact that the i-WAT trust model requires construction of a
web of trust[9], which requires that a new participant must know someone in
person in the circle of friends around the i-WAT ticket.

Cost of Lazy Approval. Cost of lazy approval by W0 for a recipient Wi is
denoted as CLi. It is apparent that this cost exists for a reduction ticket, whose
value is reduced over time. The cost exists for other types of tickets too, because

Incentive-Compatibility in a Distributed Autonomous Currency System 51

it affects the usability of the ticket in concern; the ticket will not be usable by
Wi until W0 approves the transaction in which Wi received the ticket.

Laziness of W0 is assumed to be observable from others. This assumption is
justifiable by a software design; participants can observe how often W0 becomes
online in an i-WAT-enabled presence-sharing system.

Cost of Premature Redemption. Cost of unexpectedly early redemption
for W0 is denoted as CP0. Note that W0 is incentivized to delay redemption
even for multiplication tickets, which will often be used to control the timing of
redemption by giving users incentives to wait.

Cost of Communication. Communication cost is negligible for i-WAT, which
is the reason why the WAT System was electronized and made usable on the
Internet.

Accounting. The sum of effective values of all tickets issued by W0 in circula-
tion is denoted as

∑
V . This information is assumed to be made available to all

prospective participants. Feasibility of this is discussed in section 6.
Since the cost of trust CT0 is to be applied just once when W0 whitewashes

their identities, W0 can minimize the effectiveness of the cost by issuing as many
tickets as they can and then go on to default (see section 5.5). Therefore prospec-
tive lenders are interested in this information.

4.2 Game Trees

A game tree is a graph consisting of players’ decision points as nodes, which are
connected in the order of their occurrences. Each player has an information set,
or a set of decision points from which they can choose an action. In the end of
the graph, the gains of all players are drawn as leaves.

In the figures to follow, types of participants are not made explicit in the trees
except for those of W0, which are distinguished by probability p0.

Payoffs for Issuing. Fig. 5 shows a game tree for issuing an i-WAT ticket.
The first player is the nature who chooses between two types of W0 as the

drawer: successful or failing to redeem the ticket. These types appear by proba-
bilities of (1− p0) and p0, respectively, for reasons either situational of strategic
which are not distinguishable by other participants.

The lender W1 has an information set in which the player is uncertain about
W0’s type. Depending on the player’s belief, W1 chooses to either accept or refuse
the ticket presented by W0.

Inside parentheses are the gains of W1 and W0 in each combination of W0’s
type and W1’s action.

1. If W1 chooses to accept the ticket
– W1’s expectation is U1 − C1p0
– W0’s expectation is U0 − C′

0(1 − p0) − C0p0

52 K. Saito, E. Morino, and J. Murai

U1 : UX1 + V1 − V0 − CL1, C1 : Vr(1 − p1) + CT1p1

U0 : UXS
0 + V0, C0 :

VrCT0∑
V

, C′
0 : Vr + CP0 − UXE

0

Fig. 5. Game tree for issuing. Vr = V1 and p1 = 0 if W1 is the last user.

2. If W1 chooses to refuse the ticket
– Both W0 and W1 gain or lose nothing.

The utility UX1 depends in large part on whether the ticket will be accepted
by W2 or not. It is also an important factor for minimizing |V1 − V0| for a
reduction ticket, in which case both W0 and W1 wish Vr to be zero. In case of a
multiplication ticket, W1 will typically wait until the effective value reaches Vx,
and then use the ticket against W0 for both maximizing their gain V1 − V0 (in
case of successful W0) and minimizing their loss to V0 (in case of failing W0).

In any case, p0 is an important factor for W1 to make a decision.

Payoffs for Circulation. Fig. 6 shows a game tree for circulating an i-WAT
ticket. The tree is an extension to Fig. 5.

1. If Wn chooses to accept the ticket
– Wn’s expectation is Un − Cnp0

2. If Wn chooses to refuse the ticket
– Wn gains or loses nothing.

If n is small, Wn is interested in the trustworthiness of all participants Wi

where 0 ≤ i < n. Since
∏n−1

i=1 pi approaches zero as n increases, Wn will be
indifferent of the type of W0 if n is sufficiently large; they will tend to accept
the ticket.

This may lead to a moral hazard, but still Wn will be interested in maintaining
the trust model of i-WAT as described in the following section.

Incentive-Compatibility in a Distributed Autonomous Currency System 53

Un - Cn

Un

Un : UXn + Vn − Vn−1 − CLn, Cn : (Vr(1 − pn) + CTnpn)
n−1∏
i=1

pi

Fig. 6. Game tree for circulation. Vr = Vn and pn = 0 if Wn is the last user.

5 Protections Against Moral Hazards

5.1 Overview

Table 2 shows the list of hazards in concern.
A case of someone receiving goods or service and escaping without providing a

ticket is not discussed because it does not involve a successful i-WAT transaction,
and there can be no proof of the incident within the context of the WAT Core
(operational solutions need to be pursued).

Double-spending is also excluded from the list because its detection can be
automated (it is in our reference implementation), and W0 has no incentive to
turn off such a software feature.

5.2 Sloppy Key Management

i-WAT uses public key cryptography as a protection against impostors. Failing
to follow the good practice is considered a moral hazard. Keeping the good
practice, on the other hand, maintains the trust model, and prevents offenders
from getting away with unpaying the cost of trust.

This section describes how failing to follow the good practice in key manage-
ment is against the subject’s own interest. Discussions at later sections assume
that the trust model is maintained.

Compromised Secret. If a secret key is compromised or lost, the key needs to
be declared invalid, and replaced with a new one. Since an i-WAT ticket records
the public key user IDs2 instead of the identifiers of the keys themselves, replacing
2 A public key user ID is a character string. Under the current operation of PGP, it

is typically an e-mail address.

54 K. Saito, E. Morino, and J. Murai

Table 2. Possible moral hazards and the imposed risks to the subjects

Name Description Risk to the Subject

Compromised secret The subject’s secret key is com-
promised or lost.

Cost of trust/Entrapment

Evidenceless signing Signs public keys without check-
ing their validity.

Impostors/Suspect for col-
lusion

Evidenceless full trust Gives full trust to someone with-
out knowing them.

Impostors/Suspect for col-
lusion

Excessive issuing Issues an excessive amount of tick-
ets.

Defaulting → cost of trust/
Premature redemptions

Lazy approval Be late in approving transactions. Premature redemptions
Defaulting Defaults upon redemption. Cost of trust
Empty promise Receives the ticket and escapes

without providing promised goods
or service

Cost of trust

the key does not affect the correctness of the data. However, this replacement
costs equivalent to CTi for Wi with the secret key in question because it involves
reconstruction of the web of trust. Besides, the compromised key may be used
for an entrapment (section 5.7).

Evidenceless Signing/Full Trust. If participants sign public keys of others
without personally validating them, or if they fully trust other participants with-
out knowing their trustworthiness, there is a risk of allowing impostors of real
or imaginary persons in the circle of friends around the i-WAT ticket.

Such impostors may perform misbehaviors like an empty promise, by which
the signer/truster may be victimized. Or worse, they may be suspected as col-
laborators of such misbehaviors.

5.3 Excessive Issuing

Excessive issuing can mean more debt than W0 can handle, so that there is a risk
of defaulting (increased p0), which discourages both W0 and W1 to give birth to
a ticket.

Furthermore, since excessive issuing is assumed to be observable from current
ticket owners, they would want W0 to redeem the tickets quickly, in order to
avoid W0’s defaulting with the tickets they have. This should be especially true
for those tickets whose chains of endorsements are still short. Which means that
excessive and intensive issuing attracts premature redemptions.

5.4 Lazy Approval

There is a risk that circulation may be stalled by negligence of W0 in their role
of approving transactions.

Let us stand upon Wn−1’s view point. If W0 is late to respond to the request for
approval, the prospective transaction is delayed, costing CLn to Wn which Wn−1

Incentive-Compatibility in a Distributed Autonomous Currency System 55

knows that Wn can predict. Meanwhile, W0 is not affected by their own laziness
because acceptance and approval happen at the same time. When likelihood of
acceptance is in question, Wn−1’s natural choise is to ask W0 for redemption.

Therefore, being lazy is to risk premature redemptions, and W0 is incentivized
to respond quickly.

5.5 Defaulting

W0 would want to minimize C0 upon defaulting. If Vr can be reduced (as in
the case of a reduction ticket), there may be no reason to default to begin with.
Therefore, the only option for W0 is to increase

∑
V to minimize the effect of

CT0. However, the value is monitored by all prospective lenders, so that W0
cannot increase it over a reasonable amount.

5.6 Empty Promise

If there is a proof of an empty promise, W0 can disapprove further transactions
with the ticket. If the ticket has not been used further, Wn−1 can safely become
the valid owner of the ticket by a roll back.

The proof of the incident becomes a source of bad reputation for Wn, which
can only be whitewashed by paying the cost of trust.

5.7 Collusions

There may be a colluded defaulting by every Wi where 0 ≤ i < n, so that Wn

is victimized. However, the trust model implies that Wn must have needed to
know someone in person in the chain of endorsement. At least that someone can
be made to pay the cost of trust, which makes such collusion difficult.

There may be a colluded empty promise by W0 and Wn so that Wn−1 is
victimized. This means that W0 escapes too, in which case W1 can take over the
responsibility of the drawer. If it fails and the responsibility is forwarded upto
Wn−1, it is indistinguishable from the state in which every Wi where 0 ≤ i < n−1
is colluding. The rest is the same as the case of a colluded defaulting.

Another form of colluding may be to entrap Wi so that it looks as if Wi

committed a misbehavior such as an empty promise. This is only possible with
a compromised secret key or a forged key pair, because there needs to be a
verifiable signed message to prove that Wi did it. This requires a breach of the
trust model.

6 Future Work

We have been implementing i-WAT as a plug-in for a messaging client called wija,
which we are also developing. wija conforms to XMPP (Extensible Messaging
and Presence Protocol) , and is available at the following URL:

– http://www.media-art-online.org/wija/

56 K. Saito, E. Morino, and J. Murai

We intend to implement features to our software for monitoring excessive
issuing: sharing information about tickets issued by others in circulation. We
believe this can be done in a decentralized and trusted way. [10] briefly discusses
a technique for doing this, which is an application of the protocol for fair sharing
described in [11].

7 Related Work

Geek Credit[12] is an example of exchange medium usable on the Internet, which
is close to i-WAT. It defines Geek Credit policy, which is similar to the i-WAT
state machine, but the problem of double-spending is handled differently. Geek
Credit detects double-spending at redemption, so that each trading does not
need to be consulted with the drawer.

While this simplifies the protocol, the risk of attacks is higher for Geek Credit
than for i-WAT. Recovery is also more difficult because the incident is only
revealed at a later stage.

PPay[13] is another example of exchange medium which is similar to i-WAT.
PPay handles the problem of double-spending in almost the same way as i-WAT
does; it requires approval (process of reassignment) by the issuer of the coins
when they are transferred to other parties. The difference is that this authority
is duplicated in PPay. It assumes that an external banking facility exists, which
exchanges the governments’ fiat money with digital coins. Such facility may be
given authority to reassign coins.

This makes the currency more available, but it also makes the protocol more
complicated that that of i-WAT. We believe that availability of the issuers can
be increased by applying existing fault-tolerance techniques, independently from
the currency design. Since it can avoid premature redemptions and increase the
utility of their freedom of creating exchange media, some issuers may find it
beneficial to pay the cost of applying such techniques.

8 Conclusions

A medium of exchange which represents a guaranteed value should take an im-
portant role in the design of peer-to-peer systems, in which under-utilized re-
sources are shared among selfish participants.

This paper showed that the design of i-WAT is incentive-compatible as to
protection against moral hazards: taking advantage of the rules will result in the
subject’s confrontation to an uncontrollable risk, which is imposed by rational
behaviors of other participants.

References

1. Saito, K.: Peer-to-peer money: Free currency over the Internet. In: Proceedings
of the Second International Conference on Human.Society@Internet (HSI 2003),
Lecture Notes in Computer Science 2713, Springer-Verlag (2003)

Incentive-Compatibility in a Distributed Autonomous Currency System 57

2. Feigenbaum, J., Shenker, S.: Distributed algorithmic mechanism design: Recent
results and future directions. In: Proceedings of the 6th International Workshop
on Discrete Algorithms and Methods for Mobile Computing and Communication
(DIALM ’02). (2002)

3. Schwarz, F.: Das experiment von Wörgl (1951) Hypertext document. Available
electronically at http://userpage.fu-berlin.de/∼roehrigw/woergl/

4. Seron, S.: (Local Exchange Trading Systems 1 - CREATION AND GROWTH
OF LETS) Hypertext document. Available electronically at http://www.gmlets.u-
net.com/resources/sidonie/home.html.

5. Glover, P.: (Ithaca HOURs Online) Hypertext document. Available electronically
at http://www.ithacahours.com/.

6. watsystems.net: (WATSystems home page) Hypertext document. Available elec-
tronically at http://www.watsystems.net/.

7. Saito, K., Morino, E., Murai, J.: Reduction over time: Easing the burden of peer-to-
peer barter relationships to facilitate mutual help. In: Proceedings of the Second
International Workshop on Computer Supported Activity Coordination (CSAC
2005). (2005)

8. Saito, K., Morino, E., Murai, J.: Multiplication over time to facilitate peer-to-peer
barter relationships. In: Proceedings of the 2nd International Workshop on P2P
Data Management, Security and Trust (PDMST ’05). (2005)

9. Saito, K.: WOT for WAT: Spinning the web of trust for peer-to-peer barter re-
lationships. In: IEICE TRANSACTIONS on Communication, The Institute of
Electronics, Information and Communication Engineers (2005)

10. Saito, K.: Maintaining trust in peer-to-peer barter relationships. In: Proceedings
of 2004 Symposium on Applications and the Internet (SAINT 2004 Workshops),
IEEE Computer Society Press (2004)

11. Ngan, T.W.J., Wallach, D.S., Druschel, P.: Enforcing fair sharing of peer-to-peer re-
sources. In: 2nd International Workshop on Peer-to-Peer Systems (IPTPS), Berke-
ley, California (2003)

12. Komarov, A.: (Geek Credit homepage) Hypertext document. Available electroni-
cally at http://home.gna.org/geekcredit/.

13. Yang, B., Garcia-Molina, H.: PPay: micropayments for peer-to-peer systems. In:
Proceedings of the 10th ACM conference on Computer and communications secu-
rity (CCS ’03). (2003)

Handling Free Riders in Peer-to-Peer Systems

Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

University of Waterloo, Waterloo, Canada
{lmekouar, iraqi, rboutaba}@bbcr.uwaterloo.ca

Abstract. In reputation-based peer-to-peer systems, reputation is used
to build trust between peers and help selecting the right peers to down-
load from. In this paper, we argue that reputation should not be used for
service differentiation among the peers. To provide the right incentives
for peers to share files and contribute to the system, the new concept
of Contribution Behavior is introduced for partially decentralized peer-
to-peer systems. Service differentiation is achieved based on the Contri-
bution Behavior of the peers rather than their reputations. Simulation
results assess the ability of the proposed algorithm to effectively identify
free riders and malicious peers that upload malicious content, hence re-
ducing the level of service provided to these peers and preserving network
resources. On the other hand, good peers that contribute to the system
receive better services which increases their satisfaction significantly.

1 Introduction

In a Peer-to-Peer (P2P) file sharing system, peers communicate directly with
each other to exchange information and share files. In an open P2P system,
peers often have to interact with unknown peers (i.e. strangers) and need to
manage the risks involved with the interactions. For example, if a user wants to
download a file, the user is given a list of peers that can provide the requested
file. The user has then to choose one peer from which the download will be
performed. Since the open and anonymous nature of Peer-to-Peer systems open
the door to misuses (by malicious peers) and abuses (by free riders), peers need
to be able to reason about trust in order to avoid untrustworthy peers.

Trust management is any mechanism that allows to establish mutual trust
which will motivate peers to cooperate. Building trust is difficult especially when
we are dealing with strangers in virtual communities. In such interactions, risk
is involved and in order to minimize this risk and get advantage from these
interactions, trust is needed. Several reputation-based P2P systems [1, 2, 3, 4, 5]
were introduced to build trust among peers. These systems are used to attribute
a value to a peer based on its past transactions. The higher the reputation score,
the more confident we are that this peer will upload an authentic file. When
people interact with each other over time, the history of past transactions will
help inform them about their real behavior. In addition, peers are motivated
to display good behavior as it will have an impact on their future interactions.
Political scientist Robert Axelrod refers to this phenomenon as the shadow of
future [6].

Z. Despotovic, S. Joseph, and C. Sartori (Eds.): AP2PC 2005, LNAI 4118, pp. 58–69, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Handling Free Riders in Peer-to-Peer Systems 59

1.1 Motivation and Contribution

Almost all of the proposed reputation management schemes try to achieve one
or more of the following goals:

1. Isolate malicious peers from the network by downloading files from the rep-
utable peers, hence reducing malicious uploads

2. Increase the users satisfaction
3. Use the network resources more efficiently
4. Motivate peers to share files and contribute to the system
5. Reward the reputable peers by providing better services to them

Goals 1, 2 and 3 have been more or less addressed by most reputation man-
agement schemes. Goals 4 and 5 are mostly related to providing incentives and
service differentiation. Few works have addressed service differentiation. Section
6 presents the most important works.

Most proposed reputation management schemes help reduce malicious uploads
by choosing the high reputable peers for downloads. They also help increase the
peers satisfaction. However, they do not provide incentives for peers to have a
high reputation value and hence share. Indeed, the reputation considered in the
proposed schemes is for trust (i.e. maliciousness of peers), based on the accuracy
and quality of the files uploaded.

In eBay, members have interest in building trust and get a high reputation
value in case they want to become “sellers”. The higher is the reputation of a
member, the higher is the chance that buyers will trust to deal with him.

In a P2P file sharing system, the situation is different. What is the interest
that a peer can gain from having a high reputation value? This peer will be more
and more requested for uploads which is not a gain for this peer, but more for
the peers that download from it. This is why service differentiation is needed.

Few reputation schemes proposed service differentiation among the peers (cf.
Section 6). However, these schemes considered peers’ reputation as a guideline
for service differentiation. This means that a peer with a high reputation, will
receive better service than a peer with a lower reputation.

This however does not address the problem of free riders. Free riders are
peers that take advantage of the system without contributing to it1. Providing
a mechanism to detect free riders is an important issue since in [7], it has been
found that most of the shared content in Gnutella is provided by only 30% of
the peers. This means that 70% of the peers are free riders. There should be a
mechanism to reward the contributing peers and encourage other peers to share
their content.

However, free riders can have a high reputation2, but this only means that
the files that they are providing are authentic. If the reputation is used as a
guideline for service differentiation, then free riders will also receive the same
1 Or with a very small contribution.
2 E.g. a free rider may upload few authentic files and get a high reputation. Then, the

free rider starts taking advantage of the system thanks to its high reputation. In the
literature, this phenomenon is called “milking”.

60 L. Mekouar, Y. Iraqi, and R. Boutaba

service as the participating peers. Using reputation for service differentiation,
will not allow detecting free riders. It will however provide better service to high
reputable peers and low or no service to low reputable peers.

In this paper, we argue that a good scheme for service differentiation should
be able to detect free riders and malicious peers and lower the service provided to
them. This will have a double effect. On one hand, this will encourage free riders
and malicious peers to change their behavior. And, on the other hand, good
peers will receive a better service and will be motivated to continue providing
good service. In this paper, we propose such a scheme and show that it is able to
detect free riders and malicious peers and reduce the services provided to them
while providing good peers with a better service.

The paper is organized as follows. Section 2, describes briefly the reputation
management scheme considered in this work. Section 3 presents the proposed
new contribution management scheme while, section 4 discusses service differ-
entiation issues for partially decentralized P2P systems. Section 5 presents the
performance evaluation of the new scheme and Section 6 describes the related
works. Finally, section 7 concludes the paper.

2 Reputation Management

In this section, we describe briefly the reputation management scheme considered
in this paper. For more details, please refer to [8].

2.1 Notations and Assumptions

In this paper, we consider partially decentralized P2P systems. In these systems,
supernodes index the files shared by peers connected to them, and proxy search
requests on behalf of these peers. Queries are therefore sent to supernodes, not
to other peers. In the remaining of the paper, the following notations are used:

– Let Pi denotes peer i
– Let Di,j denotes the size of downloads performed by peer Pi from peer Pj

– Let Di,∗ denotes the size of downloads performed by peer Pi

– Let D∗,j denotes the size of uploads by peer Pj

– Let AF
i,j be the appreciation of peer Pi of downloading the file F from Pj

– Let Sup(i) denotes the supernode of peer i

2.2 The Reputation Management Scheme

After downloading a file F from peer Pj , peer Pi will evaluate this download. If
the file received corresponds to the requested file, then we set AF

i,j = 1. If not,
we set AF

i,j = −1. In the latter case, either the file has the same title as the
requested file but different content, or that its quality is not acceptable. Each
peer Pi in the system has four values, called reputation data (REPPi), stored by
its supernode:

Handling Free Riders in Peer-to-Peer Systems 61

1. D+
i,∗: Satisfied downloads of peer Pi from other peers,

2. D−
i,∗: Unsatisfied downloads of peer Pi from other peers,

3. D+
∗,i: Satisfied uploads from peer Pi to other peers,

4. D−
∗,i: Unsatisfied uploads from peer Pi to other peers

Note that we have: D+
i,∗ + D−

i,∗ = Di,∗ and D+
∗,i + D−

∗,i = D∗,i∀i.
When a peer Pi joins the system for the first time, all values of its reputation

data REPPi are initialized to zero3.
When receiving the appreciation (i.e. AF

i,j) of peer Pi, its supernode Sup(i)
will perform the following operation:

If AF
i,j = 1 then D+

i,∗ = D+
i,∗ + Size(F),

else D−
i,∗ = D−

i,∗ + Size(F).
Then, the appreciation is sent to Sup(j) that will perform the following op-

eration:
If AF

i,j = 1 then D+
∗,j = D+

∗,j + Size(F),
else D−

∗,j = D−
∗,j + Size(F).

We compute the Authentic Behavior of a peer Pj as:

ABj =
D+

∗,j−D−
∗,j

D+
∗,j+D−

∗,j

=
D+

∗,j−D−
∗,j

D∗,j
if D∗,j �= 0

ABj = 0 otherwise
(1)

Note that ABi is a real number between −1 (if D+
∗,j = 0) and 1 (if D−

∗,j = 0).

3 Contribution Management

We believe that trust in a peer-to-peer system should be addressed according
to the following dimensions: 1) Authentic Behavior, 2) Credibility Behavior, and
3) Contribution Behavior

Authentic Behavior (AB): this is the reliability of a peer in providing accurate
and good quality files. Good peers have usually a high authentic behavior value,
while malicious peers usually get lower values since they are providing malicious
content. This value represents the reputation of a peer. It allows to differentiate
between good and malicious peers.

Credibility Behavior (CB): this represents the sincerity of a peer in providing
a honest feedback. The credibility behavior is an important indicator that allows
to identify liar peers and reduce their effect on the reputation system. In [5],
the concept of Suspicious Transaction was introduced to compute the credibility
behavior.

Contribution Behavior (CTB): in this paper, we introduce the new concept of
Contribution Behavior that allows to distinguish between peers that contribute
positively4 to the system (i.e. altruistic) and the free riders (i.e. egoistic).
3 This is a neutral reputation value.
4 We do not consider uploading malicious content as a contribution. Only authentic

uploads are taken into consideration.

62 L. Mekouar, Y. Iraqi, and R. Boutaba

Fig. 1. Peer Behavior Dimensions

The behavior of a peer Pi is characterized by the triplet (ABi, CBi, CTBi) (cf.
Figure 1) which characterizes the behavior of the peer in terms of Authentic Be-
havior (sending authentic or inauthentic files), Credibility Behavior (lying or not
in the feedback) and Contribution Behavior (contributing positively or not to the
system). Good peers will have high values along the three defined dimensions.

We compute the Contribution Behavior (CTB) of a peer Pj as follows:

CTBj =
D+

∗,j−D−
∗,j

D+
j,∗+D−

j,∗
=

D+
∗,j−D−

∗,j

Dj,∗
if Dj,∗ �= 0

CTBj = D+
∗,j − D−

∗,j otherwise
(2)

The intuition behind equation 2 is as follows. While the reputation value
is based only on the uploads of a peer to reflect its authentic behavior (cf.
equation 1), the contribution behavior should be based on both the uploads and
the downloads of the peer.

The contribution of a peer is the ratio between what the peer has provided to
the system and what it has consumed from it. The term D+

∗,j −D−
∗,j means that

the contribution value is sensitive to the maliciousness of the peer. This term
allows to affect both free riders and malicious peers.

Ideally, a peer should be charged only for its authentic downloads since it
is not responsible for the malicious content that it received from other peers.
However, some malicious peers may rate all their downloads as inauthentic so
that these downloads will not be counted in the contribution value. To avoid
this situation, the total downloads is used for computing the contribution value.
This will motivate the peers to deal only with the high reputable peers.

4 Service Differentiation

We divide service differentiation into two categories: implicit and explicit.
Implicit service differentiation, is the service differentiation that results from

the normal evolution of the system. For example, when a peer has a low reputation,
this peer will have a low probability of being selected for uploads, which will not
allow it to increase its contribution value nor its reputation.

Handling Free Riders in Peer-to-Peer Systems 63

Explicit service differentiation, is the one that results from the explicit deci-
sion of system entities. For example, a supernode may decide to enforce service
differentiation policies on the peers it manages. Explicit service differentiation
can also be enforced at the level of the peer. For example, a peer may decide
not to upload a file to a peer with a low credibility value (along the Credibility
Behavior dimension), since the later peer may wrongfully send negative feedback
and affect badly the reputation of the peer performing the upload. A peer may
also decide not to upload a file to a peer with a low contribution value (along the
Contribution Behavior dimension), since the peer requesting the upload may be
a free rider.

The new concept of Contribution Behavior can be used to enforce service dif-
ferentiation at any level (i.e. supernode or peer). To show its effectiveness, in this
paper we enforce service differentiation policies at the supernode level. When a
peer Pi sends a request to its supernode Sup(i), this later will associate to the
request a probability probi according to the contribution level of peer Pi. This
is the probability of performing the requested service by Sup(i). The higher the
contribution value is, the more chances the supernode will execute the requests
for this peer5. This probability is computed as follows:

if Di,∗ ≤ MinDownload probi = 1
else

if CBTi ≤ 0 probi = 0
else probi = Min{CBTi, 1}

Since a new peer that joins the system will have its contribution value set
to 0, we allow these new peers to download a minimum amount set to a pa-
rameter MinDownload. In this case, the probability used by the supernode is
1. After exceeding this minimum amount of download, the probability used by
the supernode will be computed according to the contribution value of the peer.
The value of MinDownload should be carefully chosen not to encourage peers
to change identities and benefit from free downloads. Note that in case that
CBTi ≥ 1, probi is set to 1. This means that the peer is contributing to the
system more than what it is consuming from it.

5 Performance Evaluation

In the performance evaluation section, we will compare the following schemes:

1. The reputation management scheme with no service differentiation (NOSD).
This is the same scheme presented in [8]. This is to show the importance of
service differentiation among the peers.

5 To prevent peers from repeatedly sending the same request to the supernode over
and over until the request is handled, a time period can be associated with each
request. This will motivate peers to contribute if they want their requests to be
processed by the system.

64 L. Mekouar, Y. Iraqi, and R. Boutaba

2. The reputation management scheme with the reputation value as a guideline
for service differentiation. We will call this scheme the Reputation-Based
Service Differentiation (RBSD). Since the reputation values (i.e. ABi) are
between −1 and 1, in this scheme, the probability probi is computed as
follows: probi = (1 + ABi)/2, where ABi is computed as in Eq. 1.

3. The reputation management scheme with the Contribution Behavior as a
guideline for service differentiation. We will call this scheme the Contribution-
Based Service Differentiation (CBSD).

To assess the effectiveness of the considered schemes in identifying free riders,
a high percentage of free riders is assumed. In this section, we do not consider
peers that lie in their feedbacks. This issue has been addressed in [8].

5.1 Simulation Parameters

We use the following simulation parameters:

– We simulate a system with 1000 peers and 1000 files.
– File sizes are uniformly distributed between 10MB and 150MB.
– At the beginning of the simulation, each peer has at most 45 randomly chosen

files and each file has at least one owner.
– As observed by [9], KaZaA files’ requests do not follow the Zipf’s law dis-

tribution. In our simulations, file requests follow the real life distribution
observed in [9]. This means that each peer can ask for a file with a Zipf
distribution over all the files that the peer does not already have. The Zipf
distribution parameter is chosen close to 1

– Peers are divided into two categories: Contributors and Free riders. Free rid-
ers constitute 70% of the peers. From each category, 30% of the peers are
malicious peers that send inauthentic content. Peers behavior and distribu-
tion are summarized in table 1.

– To assess the performance of the considered schemes in a highly dynamic
environment, only 40% of all peers with the requested file are found in each
search request. This is due to the partial search results obtained in partially
decentralized P2P systems with supernodes.

– Free riders share files with a probability of 5%. In addition, 250 of the non
malicious free rider peers will accept uploading the first file to get a high
reputation.

– MinDownload is set to the average file size (i.e. 70MB).
– We simulate 90000 requests.

According to table 1, peers with indices from 1 to 700 belong to the cate-
gory of free riders, peers with indices from 701 to 1000 belong to the category
of contributor peers. Accordingly, peers with indices from 491 to 700 are mali-
cious peers that provide malicious content in addition of being free riders. Peers
with indices from 701 to 790 provide malicious content but still participate in
uploading files to other peers. We have considered a situation where we have a
high percentage of free riders as observed by [7] to show the effectiveness of our
proposed scheme in identifying and isolating free riders and malicious peers.

Handling Free Riders in Peer-to-Peer Systems 65

Table 1. Peer Behavior and Distribution

Probability of sending inauthentic files
Category of peers Percentage Malicious (30%) Non malicious (70%)

Contributors 30% 0.9 0.01
Free Riders 70% 0.9 0.01

5.2 Performance Parameters

In these simulations, we will focus on the following performance parameters:

– Percentage of successful requests: computed as the total number of requests
that have been performed for the peer during the simulation over the total
number of all submitted requests by this peer.

– Peer contribution level: shows the contribution behavior of each peer which
is computed using equation 2.

– Peer load share: this parameter is computed as the normalized load sup-
ported by the peer. This is computed as the sum of the uploads performed
by the peer over the total uploads in the system.

5.3 Simulation Results

No Service Differentiation Case:
Figure 2 depicts the peer load share in the case of the NOSD scheme. The

X axis represents the number of requests while the Y axis represents the peer
load share. From the figure, it is clear that the reputation management scheme is
able to isolate malicious peers (i.e. peer id 491 to 790), as they are not requested
for uploads. It is also clear that the free riders do not contribute significantly

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

Peer

P
ee

r
Lo

ad
 S

ha
re

Fig. 2. Peer Load Share for NOSD

66 L. Mekouar, Y. Iraqi, and R. Boutaba

to the system. All the load is almost supported exclusively by non malicious
contributor peers (i.e. peer id 791 to 1000).

Since there is no service differentiation, all the requests sent to the supernode
will be performed regardless of the contribution of the peers. This is obviously
unfair to the peers that contribute to the system.

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Peer

P
ee

r
R

ep
ut

at
io

n

0 100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3

4

Peer

P
ee

r
C

on
tr

ib
ut

io
n

B
eh

av
io

r

Fig. 3. (a) Peers Reputation in RBSD, (b) Peers Contribution Behavior in CBSD

Service Differentiation Case:
Figure 3.a depicts the reputation values of the peers in the case of the Repu-

tation Based Service Differentiation (RBSD) scheme. It is clear that the scheme
is able to identify malicious peers. However, the scheme is not able to differen-
tiate between free riders and contributor peers. Reputation is not a good indi-
cator of the contribution of the peer as we can see from comparing figure 2 and
figure 3.a.

Figure 3.b depicts the Contribution Behavior value in the case of the Contri-
bution Based Service Differentiation (CBSD) scheme. By comparing this figure
with figure 2, we can notice that the Contribution Behavior value is a good in-
dicator of the peer load share. In other words, a peer with a high contribution
level will support more load than a peer with a low contribution level. Note that
the Contribution Behavior values of malicious peers (i.e. peer id 491 to 790) are
negative. This is because malicious peers are harming the system by uploading
malicious files. This means that the Contribution Behavior value can be used for
service differentiation which will effectively reward good peers and punish both
free riders and malicious peers.

Figure 4 shows the percentage of successful requests for (a) RBSD and
for (b) CBSD. From figure 4.a, we can notice that free riders have about
50% chance to have their request processed by the supernode. Free riders with
high reputation values (i.e. peer id 1 to 250) have almost the same percentage
of successful requests as non malicious contributor peers. However, free riders
did not contribute at the same level. In figure 4.b, free riders with IDs from
1 to 250, have a lower percentage of successful requests since they uploaded

Handling Free Riders in Peer-to-Peer Systems 67

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Peer

P
er

ce
nt

ag
e

of
 S

uc
ce

ss
fu

l R
eq

ue
st

s

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Peer

P
er

ce
nt

ag
e

of
 S

uc
ce

ss
fu

l R
eq

ue
st

s

(a) (b)

Fig. 4. Percentage of Successful Requests (a) RBSD, (b) CBSD

only few files compared to non malicious contributor peers. The later peers re-
ceive a high percentage of successful requests since they have supported almost
all the load. They contributed significantly and positively to the system. The
supernode processed their requests with a high probability. Some of the malicious
peers uploaded more malicious content than good one, hence their percentage of
successful requests is very low. This is because their contribution is negative as
shown in figure 3.b.

Note that in these simulations, we assumed a static peer behavior. This means
that peers do not change their behavior over time. This is to assess the capability
of the proposed scheme in detecting malicious and free rider peers and preventing
them from obtaining good service. In a real life system, however, peers will tend
to change their behavior and we expect free rider peers with rational behavior
to change from free riding to contributing to the system.

6 Related Work

The authors in [10] proposed a service differentiation protocol (SDP) for com-
pletely decentralized unstructured P2P networks. This protocol works by sending
the reputation score of the requesting peer to other peers. These peers will map
the reputation score to a Level of Service. These peers will provide service to
the requesting peer according to this level. In addition of being proposed for
completely decentralized P2P systems, this scheme does not take into account
the maliciousness of the peers.

In [11], the authors introduce a reputation-based mechanism that assigns a
better service to higher performing peers. The proposed scheme provides incen-
tives for peers to improve their performance. The reputation is classified into
two categories: provider selection and contention resolution. In provider selec-
tion, a peer among the peers offering a service is chosen to provide the service.
In contention resolution, a peer among the peers requesting a service is selected

68 L. Mekouar, Y. Iraqi, and R. Boutaba

by the provider peer. This scheme uses the reputation value as a guideline for
service differentiation. In this paper, we have shown that this does not lead to a
useful service differentiation. In addition, it proposes providing the peer request-
ing a file from the peers with a similar reputation value (i.e. concept of “Layered
Communities”). This approach will most probably incur an important increase
of malicious uploads. Indeed, if a peer receives a service from a low reputation
peer, it will most probably receive bad service (e.g. malicious file) and hence
does not help the peer in providing good service to others. In this paper, we pro-
pose to provide only eligible peers with the requested service. Once the request
is approved, peers will receive the service from the most reputable providers.
Receiving malicious content will just pollute the P2P file sharing system and
waste network’s resources.

In [12], the authors analyze the effectiveness of different incentives mecha-
nisms to motivate peers to share files. The paper proposes the reputation-based
peer-approved that uses a reputation mechanism based on rating peers accord-
ing to the number of files they are advertising. Peers are allowed to download
files only from peers with lower or equal rating. However, rating peers according
to the number of files they are advertising is not efficient. Malicious peers can
advertise a high number of malicious files. These peers will still receive good ser-
vices since they will be able to upload from other peers that have a high rating
value. Even non malicious peers may advertise a large number of useless files
and still benefit from the system.

KaZaA, a proprietary partially-decentralized P2P system, has introduced the
participation level for rating peers. In KaZaA, the participation level is computed
as follows: (Uploads in MB/Downloads in MB)*100. Priority is given to peers
with high participation level, however the exact process of how this priority is
given is not known. In KaZaA, malicious peers that upload malicious content
will still have a high value of participation level. As shown in [8], KaZaA is not
able to detect malicious peers.

7 Conclusion

In this paper, we propose a contribution management scheme for partially de-
centralized peer-to-peer systems. We introduce the new concept of “Contribution
Behavior” which is used for service differentiation rather than the use of repu-
tation. The use of contribution behavior as the basis for service differentiation,
provides the right incentives for peers to share files and contribute positively to
the system. Simulation results have shown the ability of the proposed scheme to
effectively identify free riders and malicious peers and prevent them from using
fully the system. The use of Contribution Behavior for service differentiation
along with the use of the Authentic Behavior for reputation management solve
the main problems of peer-to-peer systems; free riders and malicious peers. This
will provide good peers with higher satisfaction and will achieve better network
resource utilization.

Handling Free Riders in Peer-to-Peer Systems 69

References

1. Aberer, K., Despotovic, Z.: Managing Trust in a Peer-2-Peer Information System.
In: The 9th International Conference on Information and Knowledge Management,
Atlanta, USA (2001) 310–317

2. Cornelli, F., Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.:
Choosing Reputable Servents in a P2P Network. In: The 11th International World
Wide Web Conference, Honolulu, USA (2002) 376–386

3. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust Algorithm for
Reputation Management in P2P Networks. In: The 12th International World Wide
Web Conference, Budapest, Hungary (2003) 640–651

4. Gupta, M., Judge, P., Ammar, M.: A Reputation System for Peer-to-Peer Net-
works. In: ACM 13th International Workshop on Network and Operating Systems
Support for Digital Audio and Video, Monterey, USA (2003) 144–152

5. Mekouar, L., Iraqi, Y., Boutaba, R.: Peer-to-peer most wanted: Malicious peers.
to appear in the Computer Networks Journal (2005)

6. Axelrod, R. In: The Evolution of Cooperation. Basic Books, New York (1984)
7. Adar, E., Huberman, B.A.: Free Riding on Gnutella. Technical report, HP (2000)

http://www.hpl.hp.com/research/idl/papers/gnutella/.
8. Mekouar, L., Iraqi, Y., Boutaba, R.: Detecting Malicious Peers in A Reputation-

Based Peer-to-Peer System. In: The IEEE Consumer Communications and Net-
working Conference (CCNC), Las Vegas, USA (2005)

9. Gummadi, K., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.:
Measurement, Modeling, and analysis of a Peer-to-Peer File Sharing Workload.
In: The 19th ACM Symposium on Operating Systems Principles, New York, USA
(2003) 314–329

10. Gupta, M., Ammar, M.: Service Differentiation in Peer-to-Peer Networks Utiliz-
ing Reputations. In: ACM Fifth International Workshop on Networked Group
Communications, Munich, Germany (2003)

11. Papaioannou, T.G., Stamoulis, G.D.: Effective use of reputation in peer-to-peer
environments. In: Proceedings of IEEE/ACM CCGrid: International Symposium
on Cluster Computing and the Grid. (2004)

12. Ranganathan, K., Ripeanu, M., Sarin, A., Foster, I.: Incentive mechanisms for
large collaborative resource sharing. In: Proceedings of IEEE/ACM CCGrid: In-
ternational Symposium on Cluster Computing and the Grid. (2004)

Highly Available DHTs: Keeping Data
Consistency After Updates�

Predrag Knežević1, Andreas Wombacher2, and Thomas Risse1

1 Fraunhofer IPSI
Integrated Publication and Information Systems Institute

Dolivostrasse 15, 64293 Darmstadt, Germany
{knezevic, risse}@ipsi.fraunhofer.de

2 University of Twente
Department of Computer Science

Enschede, The Netherlands
a.wombacher@cs.utwente.nl

Abstract. The research in the paper is motivated by building a decen-
tralized/P2P XML storage on top of a DHT (Distributed Hash Table).
The storage must provide high data availability and support updates.
High data availability in a DHT can be guaranteed by data replication.
However, DHTs can not provide a centralized coordination guaranteeing
data consistency upon updates. In particular, replicas may have different
values due to concurrent updates or partitioning of the P2P network. An
approach based on versioning of replica values is presented proposing a
decentralized concurrency control system, where probabilistic guarantees
can be provided for retrieving a correct replica value. This paper presents
the protocol as well as a statistical analysis of the lower bound of the
probabilistic guarantees.

Keywords: Peer-to-Peer Computing, Decentralized Data Management,
DHT.

1 Introduction

The research presented in this paper is motivated by the BRICKS1 project, which
aims to design, develop and maintain a user and service-oriented space of digital
libraries that share knowledge and resources in the Cultural Heritage domain. The
project defines a decentralized, service-oriented infrastructure that uses the Inter-
net as a backbone and fulfills the requirements of expandability, scalability and
interoperability. At the same time, the membership in the BRICKS community is
very flexible; parties can join or leave the system at any time.

BRICKS community needs to have service descriptions, administrative infor-
mation about collections, ontologies and some annotations globally available all
� This work is partly funded by the European Commission under BRICKS (IST

507457).
1 BRICKS - Building Resources for Integrated Cultural Knowledge Services,
http://www.brickscommunity.org

Z. Despotovic, S. Joseph, and C. Sartori (Eds.): AP2PC 2005, LNAI 4118, pp. 70–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Highly Available DHTs: Keeping Data Consistency After Updates 71

P2P-DOM

DHT Abstraction Layer

Index Manager

DHT

Network Layers

Query Engine

Applications

Fig. 1. Decentralized XML Storage Architecture

the time [1]. An important aspect is that data are changeable during the run-
time, i.e. updates must be allowed. Therefore, the data management is based
on our recently proposed decentralized XML data store [2]. The store is based
on top of a DHT (Distributed Hash Table) overlay, i.e. large XML documents
are split into sets of XML nodes stored then as DHT values. DHTs are low-level
structured P2P systems that provide a consistent way of routing information
to the final destination, can handle the changes in topologies and have an API
similar to the hash table data structure.

Figure 1 presents the proposed system architecture. All layers exist on every
peer in the system. The datastore is accessed through the P2P-DOM component
or by using the query engine (e.g. XPath or XQuery). The query engine could
be supported by an optional index manager that would maintain indices. The
P2P-DOM exports a large portion of the DOM [3] interface to the upper layers,
and maintains parts of a XML tree in a DHT. More details about the storage
and selected research issues can be found in [2].

Unfortunately, a DHT layer does not guarantee the availability of data it
manages. Whenever a peer goes offline, locally stored (key, value) pairs become
inaccessible. The research done in [4] proposed a wrapper around the DHT that
is able to self-manage data availability by using replication within the requested
probabilistic guarantees.

The research presented here investigates in detail data consistency, i.e. en-
suring it after an update is preformed. When a peer is offline, locally stored
replicas are inaccessible. Therefore, an update might not address all replicas,
leaving some of them unmodified. Further, uncoordinated concurrent updates
of an object result in unpredictable values of object replicas. As a consequence,
different object replicas may have different values. Thus, the main issues are how
to:

– Ensure that the correct value is read
– Synchronize offline replicas after going online again
– Handle concurrent updates on the same data

72 P. Knežević, A. Wombacher, and T. Risse

The approach presented in the paper gives probabilistic guarantees on access-
ing correct data at any point in time. Also, replicas are updated in a predefined
sequence, and they are assigned a higher version number.

The paper is organized in the following way. The next Section introduces the
DHT with high data availability and update features. Consistency issues are
analyzed afterwards in Section 3. Some related work is presented in Section 4.
Finally, Section 5 gives conclusions and some ideas for the future work.

2 Highly Available Distributed Hash Table

As suggested in [5], a common DHT API should contain at least the following
methods: route(Key, Message) (deterministic routing of a message according
to the given key to the final destination), store(Key, Value) (store a value
with the given key in DHT), and lookup(Key) (returns the value associated
with the key).

Every peer is responsible for a portion of the key space, so whenever a peer
issues a store or lookup request, it will end up on the peer responsible for that
key. When the system topology is changed, i.e. peers go offline, some peers will
be now responsible for the key space that has belonged to the offline peers. Also,
peers joining the system will take responsibility for a part of the key space that
has been under control of other peers until that moment. All (key, value) pairs
stored on an offline peer are not available until the peer comes back again.

Every value and its replicas are associated with a key that is used for store
and lookup operation. The first replica key is generated using a random number
generator. All other replica keys are correlated with the first one, i.e. they are
derived from it by using the following rule:

replicaKey(i) =
{

c : i = 1
hash(replicaKey(1) + i) : i ≥ 2 (1)

where c is a random byte array, hash is a hash function with a low collision
probability. replicaKey and i are observed as byte arrays, and + is an array
concatenation function. Thus, the key of the original is determiend to be a
random value c, while the key of the ith replica is calculated by combining the
randoam value c with the order number of the replica i and using the resulting
value as a basis for a hash function delivering the key. The above rule enables
uniqueness of all replica keys in system, and since distance between keys is high,
it increases a probability that keys are placed on different peers in system. At
the same time by knowing the first replica key, all other replica keys can be
generated with no communication costs.

2.1 Operations

In order to add data availability feature to the existing DHT, every stored value
must be replicated R number of times. Every peer calculates it from measured

Highly Available DHTs: Keeping Data Consistency After Updates 73

average peer online probability and the requested data availability. During join-
ing phase, a peer can get an initial value for R from other peers in the system,
or it can assume some default one.

High data availability in a DHT is achieved by self-adaptive replication proto-
col, i.e. missing replicas of locally stored values are recreated within refreshment
rounds. The approach is proactive; a peer wants to secure that values from its
storage which will be available even if the peer goes offline at any point in time.
Remembering the key generation schema in Formula 1, recreation of replicas
would require access to the first replica key. Therefore, it must be attached to
the stored value.

Another important aspect of the protocol are updates. As it has already been
mentioned, ensuring consistency is the main issue. Basically, there are two pos-
sible groups of approaches [6]:

– Pessimistic
Pessimistic approaches are based on locking and a centralized lock manage-
ment. When a peer in decentralized/P2P environment goes offline, it and its
data are not reachable. In addition, this may cause network partition, thus
not even all online peers are reachable. All this unreachable peers cannot
receive a lock, thus the locking-based approach is not applicable.
Quorum-based replica protocols require presence of quorums both for a read
or write operation. In environments with low online probability, such quo-
rums are hard to get and this makes the quorum-based protocols not a very
good candidate [7].

– Optimistic
In an optimistic approach, objects are not locked, but when a conflict occurs,
the system tries to resolve it, or they are resolved manually. Optimistic
approaches are simpler to implement and they are good if the probability
for updating the same object with different values at the same time is low.

In order to determine the latest value version, we need to track it. To sum-
marize, a DHT value will be wrapped in an instance of the following class:

class Entry {

Key first;

long version;

Object value;

}

Since the wrapper around DHT implements common DHT API introduced in
Section 2, store and lookup operations must be re-implemented. Further, the
mechanism for self-managing, i.e. refreshment rounds and rejoins of peers are
introduced.

lookup(Key) When a peer wants to get a value, it is not sufficient to return
any available replica. Instead of that, we must return the replica with the highest
version number to ensure that the peer gets the most up-to-date available version.
However, if two or more replicas with the same version (e.g. as a result of network
partitioning, but with different values are found), it is a conflict that could be

74 P. Knežević, A. Wombacher, and T. Risse

resolved by applying heuristics, data semantics, or has to be resolved manually.
Currently, we do not assume any heuristics, i.e. a failure is returned, which has
to be compensated by the requester.

It is important to notice that during a lookup operation, all online replicas
must be checked in order to find the latest available. Doing this by broadcasting
the request would be fully inefficient: the whole network would be flooded. Using
DHT overlay makes communication more efficient: the request is routed only to
peers that could potentially have a replica. Although, obviously the required
communication for deriving the value is higher then in DHTs without high data
availability.

store(Key, Value) When a value is created, it is wrapped in R instances of
Entry class, appropriate keys are generated and the version number is assigned
to 1. With every update, the version number is incremented by 1. During an
update, replicas are modified in sequence, i.e. first the 1st replica, then 2nd

replica until Rth replica. If the update of any replica fails, the update stops
and the rest of the replicas are not touched. The update fails if a peer that
receives the update request already has a replica with a higher version or the
same version containing different value. The proposed write operation ensures
that in case of concurrent updates only one peer completes the operation. The
rest of them must compensate the request.

In order to know what should be the next version number, the replication
layer must keep a log of (key, version) pairs of successful lookups. The log size
and its organization are part of our future work.

During a refreshment round, a peer iterates over locally stored data, checks
for missing replicas and recreates them. Every peer proceeds independently, there
are no global synchronization points in time. Another important aspect of re-
freshment is that peers get more recent data versions from other peers and if
there are no topology changes, the system will eventually stabilize. Also, at the
beginning of a refreshment round, a peer can measure the average online prob-
ability of replicas, and compute the average data availability. If the obtained
value is above a specified threshold, refreshment rounds can be made longer, so
bandwidth utilization is saved, and/or number of replicas can decrease saving
storage space. If the data availability is below the threshold, a peer should recre-
ate replicas often, and/or create more replicas, trying to catch up requested data
availability.

Measuring the average replica online probability could be done by checking
all replicas in the system. Unfortunately, this is not feasible, because we simply
do not know how many replicas are out there. Even if we knew that, measuring
would be very inefficient and unscalable. Therefore, we use the confidence interval
theory [8] to find out what is the minimal number of replicas that has to be
checked, so the computed average replica online probability is accurate with
some degree of confidence. For example, to achieve an accuracy with an error of
15% in a community of 1000 peers, we have to check only 12 randomly chosen
replicas. It can also be shown that in large communities the approach is scalable.

Highly Available DHTs: Keeping Data Consistency After Updates 75

In practice, a peer selects on random basis a few locally stored replicas, gen-
erates needed number of replica keys, checks if they are available, and computes
the average replica online availability.

When a peer rejoins the community, it does not change its ID, so the peer
will be now responsible for a part of the key space that intersects with the
previously managed. Therefore, the peer keeps previously stored data, but no
explicit data synchronization with other peers is required. Upcoming requests
are answered using the latest locally available versions. With a new refreshment
round or update, old replicas will be eventually overwritten. Replicas, whose
keys are not anymore in the part of key space managed at the rejoined peer, can
be removed or sent to peers that should manage them.

3 Data Consistency

The store operation from the previous section has been defined so that it is able
to update data, even if not all replicas are online. Namely, a store will update all
online replicas and recreate a higher version of replicas that are at that moment
offline. From then, some replicas will be represented in the system with multiple
versions, some of them will be online, some of them offline; some replicas will
be up-to-date (i.e. correct), some odd (incorrect). This Section analyzes the
probability that the correct data are found with every lookup operation.

Obviously, a correct data version will be read by a peer only if at least one
correct replica is available. In order to compute the probability of this case, we
need to model the life cycle of a replica, after it is initially created: the replica
can be online or offline, and correct (up-to-date) or wrong (containing an older
version). Therefore, during its life cycle, the replica can be in the following states:
online and correct, online and wrong, offline and correct, and offline and wrong.

3.1 Settings

Before doing the analysis, we define the environment in which the proposed
update protocol will be analyzed:

– Peers are independent
– Measured peer average online probability is p
– Because of the DHT properties, at any point in time, every object can have

at most R accessible replicas.
– Success of an update is represented by a random variable U , i.e. successful

update (U = 1) and unsuccessful update (U = 0). An unsuccessful update
could change some replicas, but not all of them. At least one replica is correct.

– Reading of a correct object version is represented by a random variable C,
i.e. correct read (C = 1) and incorrect read (C = 0)

– Random variable S represents the replica state, i.e. online-correct (S = S1),
offline-correct (S = S2), online-wrong (S = S3), and offline-wrong (S = S4).
Therefore, p = P (S = S1) + P (S = S3).

76 P. Knežević, A. Wombacher, and T. Risse

Online
Correct

(s1)

Online
Wrong

(s3)

Offline
Correct

(s2)

Offline
Wrong

(s4)

pP(U=1)

(1-p)P(U=0) pP(U=0)

(1-p)P(U=1)

p

1-p

p

(1-p)P(U=0)
1-p

pP(U=0)

(1-p)P(U=1)

pP(U=1))

Fig. 2. The life cycle of replica after creation

– No partitions are assumed
– There is no need for recovery, i.e. going offline does not destroy locally stored

data

The correct object version is going to be read, if at least one correct replica is
online. In other words, it is the counter probability that none of online-correct
replicas (P (S = S1)) is available. Therefore, the probability of reading the cor-
rect object (P (C = 1)) can be expressed as

P (C = 1) ≥ 1 − (1 − P (S = S1))R (2)

After an update R replicas are online, but there might be some other offline
replicas in the system. Therefore, Formula 2 is the lower-bound of the correct
read probability.

3.2 Life Cycle of Replica

In order to describe the life cycle of a single replica we define a discrete-time
Markov chain, represented by the state diagram on Figure 2. Transition proba-
bilities are displayed next to each arc.

An online-correct replica stays in this state as long as it is online. Also, a
replica can come to this state, if it has been offline-correct and comes online
again while no update has happened in the meantime. An online-wrong replica
becomes correct after a successful update is performed.

Highly Available DHTs: Keeping Data Consistency After Updates 77

0.2
0.4

0.6
0.8

1

p

0.2

0.4

0.6

0.8
1

PHU=1L

0

0.25

0.5

0.75

1

PHC=1L

0.2
0.4

0.6
0.8

1

p

0.2

0.4

0.6

0.8
1

PHU=1L

Fig. 3. The probability that correct value is read after update

A replica stays offline-correct if there are no successful updates. If they are
successful, the replica is not up-to-date anymore and the state is changed to
offline-wrong. Also, a replica comes into offline-correct state if it has been online-
correct before and no updates happen when it goes offline.

A replica remains in offline-wrong state until it goes online. Then, when it is
back online again, it goes to online-wrong state.

The probability of every described state (P (S = S1, S2, S3, S4)) can be calcu-
lated by applying long-run analysis of discrete-time Markov chains (i.e. equilib-
rium analysis) [9]. To compute the probability of correct read P (C = 1), we need
to determine the probability for being in state S1 (P (S = S1), see Formula 2).
Figure 3 shows the probability for reading an up-to-date object for number of
replicas R = 10. This number has been taken from a previous analysis of the
replication protocol [4], where it has been shown that it guarantees an average
object availability a ≥ 99, 9%, if peer online probability p is higher than 50%. It
can be seen that the lower bound of the correct reading probability depends only
weakly on the successful update probability P (U = 1), because with or with-
out successful update, the system will contain at least one correct replica (but
maybe offline). For example, for a peer online probability of 50%, the correct
reading probability with 100% successful updates (P (U = 1) = 1) is only 25%
higher compared with a system with a probability of zero for successful updates
(P (U = 1) = 0).

Figure 4 shows how the read probability changes with the increase of the
number of replicas (P (U = 1) = 0.9). It can be seen that when the number of
replicas is greater than 30 (R ≥ 30), good reading probability (P (C = 1) ≥ 0.9)
can be achieved, even for low-online probabilities of peers (p ≥ 0.28).

Allowing updates has introduced a possibility that in the system exist many
different versions of the same object. As a consequence, our correct reading
probability (P (C = 1)) is equal to data availability a. In the rest of the cases

78 P. Knežević, A. Wombacher, and T. Risse

0.2
0.4

0.6
0.8

1

p

20

40

60

R

0
0.25

0.5

0.75

1

PHC=1L

0.2
0.4

0.6
0.8

1

p

20

40

60

R

Fig. 4. The probability that correct value is read after update in function of the number
of replicas

(1 − P (C = 1)), some replicas could be available, but with outdated values.
Thus, applications built on top should handle scenarios when returned data
are obsolete. However, incorrect replicas will not stay in the system forever;
with every new update, or during refreshment round, they will be eventually
overwritten with the correct version.

The presented analysis has shown how data availability depends on the given
system parameters, i.e. the number of replicas R and the probability that an
update was successful P (U = 1). Future research will investigate how P (U = 1)
behaves in different application scenarios, and how it depends on the system
parameters as well.

4 Related Work

Updates in replicated distributed databases are a widely researched field. As it
has already mentioned in Section 2, both optimistic and pessimistic approaches
for resolving updates exist [6]. However, they all assume high peer online proba-
bility and global system view, e.g. [10] proposes hierarchy-less data distribution,
but the approach requires high peer online probability. Our approach is fully de-
centralized and works under any peer online probability.

The popular P2P filesharing systems (e.g. KaZaA, Gnutella, eDonkey) [11]
do not consider updates at all. If a file update occurs, it is not propagated to
other replicas. There is no way that a peer that wants to get a file can conclude
what is the freshest version.

Oceanstore [12] supports updates and does versioning of objects. An update
request is sent first to the object’s inner ring (primary replicas), which performs a

Highly Available DHTs: Keeping Data Consistency After Updates 79

Byzantine agreement protocol to achieve fault-tolerance and consistency. When
the inner ring commits the update, it multicasts the result of the update down
to the dissemination tree. To our knowledge, analysis of consistency guarantees
has not been published so far. Also, the inner ring consists of super peers that
are highly available.

The paper [13] addresses updates in P2P system, but the aim of the research
is to reduce communication costs, data consistency has not been addressed.

Ivy [14] is a peer-to-peer file system that enables writes by maintaining log of
changes at every peer with write access. Reading up-to-date file version requires
consulting all longs, and that is not very efficient. Additional tool has been
provided that can be run manually in order to resolve conflict that could occur
during concurrent updates. Our approach does not need to contact all peers in
order to find the freshest replica version.

TotalRecall [15] has a peer-to-peer storage system with update support. Files
are immutable, so every new version is stored separately in the system, and some
garbage collection is needed for removing old version. The system distinguishes
master and slave replica copies, and therefore an update is first performed on
a master responsible for an object. Then, the master updates all other slaves.
If some slaves are offline, new slave peers will be selected and the update will
be repeated. Our approach is simpler, we do not distinguish master and slaves,
so there is no need to elect new master when the old one goes offline. Even
during an update, peers could go offline, and if there is no conflict, the update
is successful.

Om [16] is a peer-to-peer file system that achieves data high availability
through online automatic regeneration while still preserving consistency guaran-
tees. File access is done by using read-one/write-all quorum, i.e. implicitly high
peer online probability is assumed. All writes are first performed at primary
replicas that update later secondary replicas.

5 Conclusion and Future Work

The work presented in the paper is adding high data availability feature to
any DHT overlay network under consideration of data consistency issues. In
particular, versioning and replication of data stored in a DHT are introduced and
a preliminary analysis has derived lower-boundaries for the probabilistic data
availability guarantees providing consistency in the system. A good probability
can be achieved even with moderate costs, i.e. number of replicas (R = 10),
and with moderate peer online probability (p > 0.5), whereas more replicas are
needed for systems where peer online probability is low.

The future work will investigate in more details some of the parameter intro-
duced in the model (e.g. update successfulness); their dependency on application
patterns and other system parameters. Also, the approach will be investigated
in situations when network partitions are allowed. Finally, the approach will be
implemented and tested in practice.

80 P. Knežević, A. Wombacher, and T. Risse

References

1. Risse, T., Knežević, P.: A self-organizing data store for large scale distributed
infrastructures. In: International Workshop on Self-Managing Database Sys-
tems(SMDB). (2005)

2. Knežević, P.: Towards a reliable peer-to-peer xml database. In Lindner, W.,
Perego, A., eds.: Proceedings ICDE/EDBT Joint PhD Workshop 2004, P.O. Box
1527, 71110 Heraklion, Crete, Greece, Crete University Press (2004) 41–50

3. W3C: Document Object Model. (2002) http://www.w3.org/DOM/.
4. Knežević, P., Wombacher, A., Risse, T., Fankhauser, P.: Enabling high data avail-

ability in a dht. In: Grid and Peer-to-Peer Computing Impacts on Large Scale
Heterogeneous Distributed Database Systems (GLOBE’05) (submitted). (2005)

5. Dabek, F., Zhao, B., Druschel, P., Stoica, I.: Towards a common api for structured
peer-to-peer overlays. In: 2nd International Workshop on Peer-to-Peer Systems.
(2003)

6. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice
Hall (1999)

7. Jiménez-Peris, R., Patin̄o-Marténez, M., Alonso, G., Kemme, B.: Are quorums an
alternative for data replication? ACM Trans. Database Syst. 28 (2003) 257–294

8. Berry, D.A., Lindgren, B.W.: Statistics: Theory and Methods. Duxbury Press
(1995)

9. Tijms, H.C.: Stochastic Models: An Algorithmic Approach. John Wiley (1994)
10. Kemme, B., Alonso, G.: Don’t be lazy, be consistent: Postgres-r, a new way to

implement database replication. In: The VLDB Journal. (2000) 134–143
11. Milojičić, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard,

B., Rollins, S., Xu, Z.: Peer-to-peer computing. Technical report, HP (2002)
http://www.hpl.hp.com/techreports/2002/HPL-2002-57.pdf.

12. Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao, B., Weatherspoon, H., Kubiatowicz,
J.: Maintenance-free global data storage. IEEE Internet Computing 5 (2001) 40–49

13. Datta, A., Hauswirth, M., Aberer, K.: Updates in highly unreliable, replicated
peer-to-peer systems. In: Proceedings of the 23rd International Conference on
Distributed Computing Systems, IEEE Computer Society (2003) 76

14. Muthitacharoen, A., Morris, R., Gil, T., Chen, B.: Ivy: A read/write peer-to-peer
file system. In: Proceedings of the 5th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’02), Boston, Massachusetts (2002)

15. Bhagwan, R., Tati, K., Cheng, Y.C., Savage, S., Voelker, G.M.: Total recall: System
support for automated availability management. In: First ACM/Usenix Sympo-
sium on Networked Systems Design and Implementation. (2004) 337–350

16. Yu, H., Vahdat, A.: Consistent and automatic replica regeneration. ACM Trans-
actions on Storage 1 (2005) 3–37

Caching Indices for Efficient Lookup in
Structured Overlay Networks

Vasilios Darlagiannis1, Nicolas Liebau1, Oliver Heckmann1,
Andreas Mauthe2, and Ralf Steinmetz1

1 Multimedia Communications Lab (KOM), Technische Universität Darmstadt,
Merckstr. 25, 64293 Darmstadt, Germany

{bdarla, liebau, heckmann, steinmetz}@kom.tu-darmstadt.de
2 Lancaster University, Computing Department, Lancaster, LA1 4YR, UK

andreas@comp.lancs.ac.uk

Abstract. Structured overlay networks for Peer-to-Peer systems (e.g.
based on Distributed Hash Tables) use proactive mechanisms to provide
efficient indexing functionality for advertised resources. The majority of
their occurrences in proposed systems (e.g. Chord, Pastry) provide upper
bounds (logarithmic complexity with respect to the size of the graph rep-
resenting the network) on the communication cost in worst case scenarios
and their performance is superior compared to unstructured alternatives.
However, in particular (empirically observed) scenarios where the pop-
ularity of the advertised resources follows a distribution considerably
different from the uniform distribution, structured P2P networks may
perform inferiorly compared to well designed unstructured P2P networks
that exploit effectively the resource popularity distribution. In order to
address this issue, a very simple caching mechanism is suggested in this
paper that preserves the theoretical superiority of structured overlay net-
works regardless of the popularity of the advertised resources. Moreover,
the churn effect observed in Peer-to-Peer systems is considered. The pro-
posed mechanism is evaluated using simulation experiments.

1 Introduction

Structured overlay networks for Peer-to-Peer (P2P) systems, e.g. Chord [27],
Pastry [24], Tapestry [29] and Omicron [7], use proactive mechanisms to provide
efficient indexing functionality for advertised resources. The majority of their
implementations provide theoretical upper bounds on the communication cost
in worst case scenarios, assuming that the maintenance of the topology heals the
divergence (caused by the dynamic participation of the peers) from the ”ideal”
network structure. Modeling the topology of a P2P network with a graph, the
maximum distance between any two nodes is equal to the diameter of the graph.
In graphs representing networks such as Chord (each node maintains O(log(N))
neighbors, where N is the number of nodes), the diameter of the network is
DCH = O(log(N)). The number of nodes may be equal to the population of
the peers, e.g. in the case of Pastry or Chord or equal to the number of the

Z. Despotovic, S. Joseph, and C. Sartori (Eds.): AP2PC 2005, LNAI 4118, pp. 81–93, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

82 V. Darlagiannis et al.

constructed clusters of peers, e.g. in the case of the two-tier architecture of
Omicron (DO = O(log(N/l)), where l is the average population of each cluster).
However, a more useful metric to evaluate the communication cost for routing
messages in structured overlay networks is the average inter-peer distance. The
average cost for graphs such as the one representing Chord is μDCH = DCH/2
[27]. On the other hand, the average inter-peer distance for networks such as
Omicron based on de Bruijn graphs [8] is μDO � DO − (k − 1)−1, where k
is the degree of the nodes [13]. However, since the graph nodes in Omicron
represent clusters of peers, the actual average inter-peer distance is smaller than
the average inter-peer distance in Chord.

Structured overlay networks have been designed mainly to overcome the in-
trinsic scalability issue of flat and unstructured networks, such as Gnutella v0.4
[20]. However, for several reasons, structured overlay networks have not been uti-
lized in widely-deployed P2P systems (with the exception of the Kademlia net-
work [18]). Instead, system designers opt for hierarchical or hybrid approaches
where a subset of peers (usually termed as super-peers, or ultra-peers) is respon-
sible for indexing and finding the advertised resources. Moreover, a number of
mechanisms have been suggested to improve the performance of unstructured
networks, e.g. expanding rings or multiple random walks [16]. The success of
these mechanisms is based on the assumption of uneven popularity of the avail-
able resources. In fact, this assumption is validated by a number of empirical
observations of file sharing systems (cf. [26], [9] and [4]) where the popularity of
the resources is reported. While there is a disagreement on the exact distribution
that describes the popularity of the resources (Zipf, lognormal, etc.), it can be
safely concluded that it is not uniform.

Therefore, an interesting debate has arisen lately on whether structured over-
lay networks can perform efficiently if non-uniform popularity of resources is ob-
served [15]. Apparently, structured networks perform equally well in any lookup
request, thus, providing upper bounds, though not exploiting effectively the
query frequency. Some hybrid approaches have been suggested to address this
issue, such as hybrid PIER [14] or OceanStore [22]. Though, in these hybrid
approaches the formation of two separate overlay networks is suggested, a struc-
tured one and an unstructured one to deal with unpopular and popular queries,
respectively. The shortcomings and weaknesses of these solutions are mainly (i)
the increased complexity, (ii) the additional maintenance cost that is out-of-
band, (iii) the lack of adaptability to both uniform and non-uniform distribu-
tions and (iv) the increased delay when the initial overlay network selection for
searching the resource fails and the fall-back alternative must be followed.

The aforementioned concerns are taken into account in the solution inves-
tigated in this paper. A simple though efficient mechanism is suggested that
capitalizes on the adequateness of caching resources following non-uniform dis-
tributions and the higher interest of the P2P users to a relatively small subset
of the available resources. It extends the capabilities of structured overlay net-
works without any additional maintenance effort and very low additional routing
cost compared to the original algorithms of structured networks in worst case

Caching Indices for Efficient Lookup in Structured Overlay Networks 83

scenarios where the cache is not properly updated. No extension of their sig-
nalling protocols is required, thus, avoiding increasing further the complexity of
their operation1. Merely, we invest on existing information collected through the
normal network operation to improve the routing performance. The observed
churn rate of the P2P networks, which is the most critical factor (together with
the popularity distribution) is considered in our simulation experiments. While
caching methods have been proposed for unstructured or hybrid overlay net-
works (cf. [17], [12]), they lack investigation on the structured counterparts.
Moreover, several caching mechanisms have been extensively used for increasing
the performance of Web technologies [1].

The rest of the paper is organized as follows. In Section 2 the proposed mech-
anism and its advantages, together with the related algorithms are presented.
Afterwards, the simulation experiments are described in Section 3, followed by
the related work in Section 4. The paper is concluded in Section 5.

2 Index Caching Mechanism

2.1 Basics

In the common design approaches of structured overlay networks, e.g. based
on Distributed Hash Tables (DHTs) [2], queries are forwarded via intermediate
peers towards the destination peer that is responsible for the part of the DHT
which includes the globally unique identifier (GUID) characterizing the query.
It is only the destination peer(s) that has the required information to reply to
the query. Such design is suitable for evenly popular items since there is non-
ambiguous mapping of the resources to the system and the workload is evenly
distributed. Thus, in such designs it is necessary to follow the whole path before
it is possible to match the query.

The common core functionality provided by the majority of structured overlay
networks could be described by the following basic operations:

1. The Routing operation that requires the construction of a routing table for
selecting the most ”promising” neighbor to forward the queries.

2. The Indexing operation that constructs and updates the necessary distributed
data structures for replying to queries.

3. The Maintenance operation that maintains the ideal network topology so
that the theoretical upper bounds for the communication cost in worst case
scenarios can be met.

Chord, Pastry and Tapestry are examples of structured networks that offer
the aforementioned functionality. However, Omicron [7] suggests an additional
function, that of caching to offer more efficient services, though it is proposed
as an optional functionality for systems dealing with non-uniformly popular re-
sources. The exploitation of the adequate design of the caching mechanism for
structured P2P networks is the focus of this paper.
1 Usually structured networks have more complex operation than their unstructured

counterparts.

84 V. Darlagiannis et al.

2.2 Mechanism Design

The rationale behind the caching mechanism is described as follows. Since peers
participate both in generating queries and routing them towards the destina-
tion, it may be advantageous to reuse the information gained from the replies
they received from locally generated queries. Thus, peers may provide directly
the position of the requested resource instead of forwarding the query until it
reaches the final DHT destination. Moreover, if peers monitor the popularity of
forwarded requests, they could additionally consider caching the most popular
of them provided that they hold the necessary indexing information. A simple
mechanism to develop such indexing knowledge is to modify the semantics of
the routing procedure. For popular requests, intermediate peers may consider
storing locally the incoming queries and generate identical ones (though origi-
nated at the intermediate peer) and forward them instead of the original queries.
The received replies can be used both to reply the stored pending queries and
to populate the local cache with useful and popular information. However, the
gathered information may be used for a maximum amount of time tTh that de-
pends on the peer uptime distribution [5]. In fact, tTh defines the maximum time
a cache entry can be used, thereby, providing a simple mechanism deal with the
high churn rate. Expired entries are removed from the cache after the tTh time.

D

Q
1

Q
2Query step

Qt
1

C

C

C

S
1

S
2

S
3

S
4

S
5

Reply stepCacher node

I

(a) Lookup steps for peer Q1.

D

Q
2

Q
2Skipped query step

Qt
2

C

C

S
7

S
8

I

C

(b) Lookup steps for peer Q2.

Fig. 1. Lookup operation using cache indices

The proposed scheme is illustrated in Figure 1 using a Chord-like structured
network. There, at time t1 peer Q1 queries for a resource indexed at peer D
(Figure 1(a)). Assume that peer I considers that the specific query is popular.
Then, instead of forwarding the query, peer I generates an identical query that
eventually arrives at peer D. Peer D replies to peer I, which both updates the
local cache and provides the reply to peer Q1. Apparently, peer Q1 may also
update its local cache if it considers the query popular. Afterwards, assume that
at time t2, with t1 < t2 < t1 + tTh (where tTh is the threshold time indicating

Caching Indices for Efficient Lookup in Structured Overlay Networks 85

that the cache content is valid with high probability), peer Q2 queries for the
same item and peer I is in the path towards peer D. In that case peer I provides
the cached information to peer Q2 immediately skipping the rest of the lookup
steps towards D (Figure 1(b)). Furthermore, peer Q2 may update its local cache
if it considers the query popular. However, in the latter case it is important to
consider the ”aging” of the information as it is not directly provided by peer
”D”, but from a cached index. Peer Q2 has to set the lifetime of the entry in the
cache to ´TTh = TTh − (t2 − t1).

Two important factors drive the design mechanisms of caching. First, the
scalability of the solution can be only provided if the size of the information that
is additionally requested by each peer is constant. However, this constraint is not
necessarily a practical limitation since this mechanism is designed to operate in
systems where a small portion of the resources is frequently requested. Thus, each
peer can locally decide which resources are popular by simply using a counter
and the elapsed time since the first accounted appearance to estimate the rate
of querying them and maintain the c most popular resources.

The second critical factor that has to be considered is the high churn rate of the
peers. Nonetheless, conditional reliability mechanisms [5] may reduce the side-
effects. Naturally, popular resources are being held by several peers. Assuming
that the responsible DHT nodes can provide back either the complete set of
these peers or an adequate subset of them, the intermediate peers have sufficient
information for locating a reliable peer that is still alive.

Key Frequency Indices

... Cc}
Expiration Pending queries

... ...

Window reset

...

Marked

...

Fig. 2. Abstract description of the cache structure

The proposed cache structure is illustrated in Figure 2. Each row contains
information for a single advertised resource. The first field includes the key of
the resource. The second field contains the Expiration timer set to the maximum
lifetime of the cache entry. As it has already been mentioned, to set the value of
the expiration time the ”age” of the index has to be considered. This mechanism
assumes that also the indexing mechanism uses an expiration timer to remove old
advertisements2. The third field is the Frequency field, which is a local counter
that indicates how many times a query for that item has arrived on the particular
intermediate peer. The value of the counter is reset periodically and the Window
reset field stores that time. The fifth field includes the list of collected Indices
about peers that posses the requested resources and may be directly contacted.
2 JXTA [28] is an example of a widely acceptable system that utilizes expiration timers

to remove old advertisements. The owners of the advertisements are responsible to
re-advertised their services and resources.

86 V. Darlagiannis et al.

The subsequent field contains the list of the Pending queries for this resource.
Finally, the Marked field indicates that the cache replacement algorithm has
selected this entry to be removed from the cache. However, the list of pending
queries for this resource is not empty and the deletion of the selected entry has
to be delayed until the reply will be received and the pending queries replied.

Further, an additional characteristic that may be successfully exploited to in-
crease the efficiency of the structured networks is the fact that peers are also
owners of resources. In cases where the requested resource is being hold locally
on the intermediate peer it can be safely provided to the requestor. It may be
additionally argued that instead of developing the index caching mechanism,
intermediate peers can provide the requested resources themselves. Neverthe-
less, this possibility is application depended and many factors (e.g. copyrights,
technical limitations, system design) have to be considered. Moreover, if further
constraints apply (e.g. find a resource or service provider in the closest vicinity
to the requestor) this solution may not provide optimal performance.

2.3 Algorithms

Several cache replacement policies have been developed to fit to the requirements
of different problems (cf. least frequently used (LFU) [23], least recently used
(LRU) and LRU-K [19]). In fact, the replacement policy adopted for the indices
cache on each peer is a variation of the LFU algorithm, which is further enhanced
with timeouts on the maximum lifetime of each entry. The latter improvement
is mandatory for capturing the dynamics of P2P overlay networks. The pseudo-
code of the LFU variation is provided in Algorithm 2.1. If there is an entry with
0 popularity and no pending queries, then this entry is removed. Otherwise, the
least popular entry is returned3.

Algorithm 2.1: LFU Replacement(cache, pendingQueries)

found = cache.get(1)
for i ← 2 to cache.size()

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

queryList = pendingQueries.remove(i)
if (cache.get(i).popularity == 0 and queryList.isEmpty())

then

{
cache.remove(i)
return (null)

else if (found.popularity > cache.get(i).popularity and
(not cache.get(i).isMarked()))

then
{
found = cache.get(i)

return (found)

The pseudo-code for filling a cache entry with information obtained from a
reply is listed in Algorithm 2.2. Upon the reception of the reply all the pending

3 The popularity of an entry on a particular peer is calculated by the number of related
queries traversing this peer over the last time window.

Caching Indices for Efficient Lookup in Structured Overlay Networks 87

Algorithm 2.2: FillCacheEntry(cache, entry, pendingQueries)

queryList = pendingQueries.remove(entry.ID)
for i ← 1 to queryList.size()

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lookupMsg = queryList.remove(1)
lookupMsg.setDestination(lookupMsg.initiator)
lookupMsg.setSender(localGUID)
lookupMsg.setV alue(entry.value)
replyMessage(lookupMsg)

if (entry.isMarked())
then

{
cache.remove(entry)

else
entry.setV alue(srcs)

Algorithm 2.3: GetCacheEntry(cache, id, pendingQueries,msg)

entry = cache.get(id)
if (entry == null)

then

⎧⎨
⎩

entry = createNewCacheEntry(id, null)
cache.put(id, entry)
return (entry)

if (entry.hasExpired() and (not entry.isMarked()))

then

⎧⎨
⎩

cache.remove(id)
entry = createNewCacheEntry(id, null)
cache.put(id, entry)

else
entry.updateUsage()

if (entry.frequency > FREQUENCY THRESHOLD and
entry.getV alue == null)

then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

queryList = pendingQueries.get(id)
if (queryList.isEmpty())

then

{
lookupMsg = createLookupMessage(id)
forwardMessage(lookupMsg)

queryList.add(msg)
if (cache.size() − marked >= MAX CACHE SIZE)

then

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

removed = LFU Replacement(cache)
queryList = pendingQueries.remove(removed.ID)
if (queryList.isEmpty)
then

{
cache.remove(removed)

else
removed.mark()

return (entry)

queries are further replied. Moreover, if the cache entry is not marked, it is filled
with the received indexing information.

Finally, the pseudo-code for retrieving a stored entry from the cache is listed
in Algorithm 2.3. If the stored entry is older than a safety time threshold (that

88 V. Darlagiannis et al.

is set based on the expected peer uptime) the entry is removed and a new one
is created, otherwise the frequency field is updated. Further, if the frequency of
the query is higher than a threshold then, the message is stored as a pending
query and a new lookup message is being created for the queried GUID, if this
is the first pending message4. Moreover, if the size of the cache has exceeded its
maximum value, the least frequently used entry is either removed if no pending
queries are present or is marked for deletion at the arrival of the reply.

3 Evaluation

3.1 Experiments Description

The goal of the simulation experiments is to evaluate the performance improve-
ment of the Chord network using the proposed indices cache mechanism and
compare to the original network.

The simulation experiments have been performed using a general purpose
discrete event simulator for P2P overlay networks [6]. The population of the
peers is consisted of 4096 peers distributed randomly over a Chord ring with key
range of 65536. Peers and resources share the same key range. Each experiment
lasts approximately 30 minutes of simulation time. Peers randomly select a re-
source to query every 20 seconds (asynchronously from each other). The process
is repeated for 80 times resulting to a total number of approximately 327000
queries.

Peers start requesting the resources after a certain stabilization period. The
probability distribution of the resource selection follows a lognormal distribu-
tion with parameters μ = 0.82 and σ = 2.9 following the guidelines in [4]. The
selection of the lognormal distribution over the Zipfian distribution is motivated
by the greater challenge of the former since the popularity of the resources is
more widely distributed. The implemented lognormal generator produces ran-
domly selected GUIDs limited to the aforementioned key range. On average,
approximately 4000− 4100 different keys are generated on each run.

Figure 3 displays a representative cumulative distribution of the resource pop-
ularity, where the resources are sorted from the most to the least popular. From
this figure, it can be concluded the first 25 most popular resources contribute to
approximately 80% of the query load. Thus, an equivalently small cache size is
adequate to store them and achieve high performance, provided that the popular-
ity identification algorithm operates correctly. Nevertheless, in real experiments,
the cache size may have to be bigger to capture effectively the popular resources
since the key range may be considerably larger.

3.2 Results

In this section the measurement observations of the simulative experiments are
reported. Figure 4 displays the reduced routing communication cost in terms
4 In this case, it should be noted that the returned entry contains no indexing infor-

mation to indicate the status of the query to the routing mechanism.

Caching Indices for Efficient Lookup in Structured Overlay Networks 89

0.00000

0.20000

0.40000

0.60000

0.80000

1.00000

20 40 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

re
so

ur
ce

 d
is

tr
ib

ut
io

n

Resources

Fig. 3. Cumulative resource popularity distribution

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600

%
 o

f
C

ho
rd

 r
ou

tin
g

co
m

m
un

ic
at

io
n

co
st

Expiration timeout (seconds)

Experiment A
Experiment B

Fig. 4. Cache routing load as a percentage of the original Chord network

of required overlay traverse steps as the percentage of the communication cost
of the original Chord network, as a function of the expiration timeout. Two
different experiments have been selected:

1. Experiment A, where the FREQUENCY THRESHOLD is 5, the max-
imum cache size is set to 80 and the frequency counter is reset every 200
seconds.

2. Experiment B, where the FREQUENCY THRESHOLD is 3, the maxi-
mum cache size is set to 300 and the frequency counter is reset every 100
seconds.

We can observe that the total communication load for query routing can be
considerably reduced using the caching mechanism down to 50% of the original
load.

Moreover, peers responsible for popular resources may become ”hot spots”
and potential bottlenecks of the system. By utilizing the cache mechanism the
load for replying to the queries is getting more evenly distributed. Figure 5(a)

90 V. Darlagiannis et al.

displays the load balance in the original Chord network, while Figure 5(b) shows
the query replying in the cache-enhanced Chord network. It should be noted
that the vertical axis is logarithmically scaled. Moreover, many peers reply with
cached values which are not considered in this figure.

1

10

100

1000

10000

0 10000 20000 30000 40000 50000 60000

Q
ue

ry
 r

ep
lie

s
of

 th
e

or
ig

in
al

 C
ho

rd
 n

et
w

or
k

Peer GUID

(a) Original Chord network.

1

10

100

1000

10000

0 10000 20000 30000 40000 50000 60000Q
ue

ry
 r

ep
lie

s
of

 th
e

ca
ch

e-
en

ha
nc

ed
 C

ho
rd

 n
et

w
or

k

Peer GUID

(b) Cache-enhanced Chord network.

Fig. 5. Load distribution for replying queries

4 Related Work

OceanStore [11] is a P2P storage system built on top of Tapestry [29] to take
advantage of its scalable lookup capabilities. However, OceanStore, employs an
additional probabilistic mechanism based on attenuated Bloom Filters [3], re-
sulting to a hybrid solution for improving Tapestry’s routing performance when
the popularity of the queries is not uniform [22]. In the context of the OceanStore
algorithm, the first Bloom filter (located at position ’0’) is a record of the objects
contained locally on the current node. The ith Bloom filter is the union of all
of the Bloom filters for all of the nodes a distance i through any path from the
current node. An attenuated Bloom filter is stored for each directed edge in the
network. A query is routed along the edge whose filter indicates the presence of
the object at the smallest distance. When the fast probabilistic algorithm fails to
provide the requested results, OceanStore activates the Tapestry routing mecha-
nism to forward the request to the final destination. However, the routing cost is
increased when Bloom Filters provide false replies. Moreover, the maintenance
of two different overlay networks increases considerably the operational cost of
the system (both overlays are based on proactive mechanisms).

Hybrid PIER [14] is an overlay network designed to improve the performance
of PIER [10] when looking up for popular resources. It is composed of two
components, (i) an UltraPeer-based Gnutella network5 and (ii), a structured
Content Addressable Network (CAN) [21] where only UltraPeers participate.
The hybrid search infrastructure utilizes selective publishing techniques that
identify and publish only rare items into the DHT (decided by the UltraPeers).
The search algorithm uses flooding techniques for locating popular items, and
structured (DHT) search techniques for locating rare items.
5 Based on Gnutella v0.6 protocol.

Caching Indices for Efficient Lookup in Structured Overlay Networks 91

Caching mechanisms have been also utilized in P2P storage systems such as
PAST [25], which is deployed on top of Pastry, a structured overlay network.
The goals of the caching mechanism in PAST are (i) to minimize client access
latencies, (ii) to maximize the query throughput and (iii) to balance the query
load in the system. However, the utilized caching management system deals with
the stored content and not with the indexing mechanism, which is the focus of
this paper.

In addition, the use of caching has been investigated for the case of unstruc-
tured P2P overlay networks. Markatos [17] exploits network locality in unstruc-
tured networks (i.e. Gnutella) using caching mechanisms. Peers cache received
replies and provide them to other peers sending similar queries instead of further
forwarding the queries. Therefore, the overall traffic is reduced. Similarly, Liu et
al. [12] investigate the reduced traffic and response time when caching the re-
sults, using simulation based experiments. Boykin et al. [4] study the statistical
properties of queries in Gnutella-like systems and provide analytical results on
query cache performance.

5 Conclusions

While caching has been extensively used in Web technologies and in unstructured
P2P overlay networks, it has not received sufficient attention for structured P2P
network approaches. The adequacy of caching popular indices in intermediate
peers along the paths towards the responsible indexing peer(s) for structured
networks is demonstrated in this paper.

The proposed caching mechanism reduces significantly the routing cost in
structured P2P networks. Compared to alternative proposals, the achieved per-
formance improvement is combined with a set of attractive features. Since the
mechanism is locally applied to peers it can be incrementally deployed. Moreover,
there is no need to introduce multiple specialized overlay networks operating in
parallel or additional protocols to update the cached information.

Though this work identifies the critical parameters that have to be considered
for the caching problem, there are several issues that can be further developed.
Selecting the optimal values for the critical parameters can improve even further
the observed performance. Moreover, a mechanism to adapt the values of the
parameters to the dynamics of the network has significant practical and theo-
retical interest. Finally, different cache operation algorithms may provide better
results in certain scenarios. The problem requires further analytical investigation
to understand better its dynamics.

Acknowledgements

This work has been performed partially in the context of the project Premium
“Preis- und Erlsmodelle im Internet - Umsetzung und Marktchancen” where TU
Darmstadt has been funded by the German Bundesministerium fuer Bildung und
Forschung (BMBF).

92 V. Darlagiannis et al.

References

1. M. Arlitt, R. Friedrich, and T. Jin. Performance evaluation of Web proxy cache
replacement policies. Performance Evaluation, 39(1-4):149–164, 2000.

2. H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking
up Data in P2P Systems. Communications of the ACM, 46(2):43–48, 2003.

3. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970.

4. P. O. Boykin, J. S.A. Bridgewater, and V. Roychowdhury. Statistical Properties
of Query Strings. Preprint, January 2004.

5. V. Darlagiannis. Overlay Network Mechanisms for Peer-to-Peer Systems. PhD
thesis, Department of Computer Science, Technische Universität Darmstadt, Ger-
many, June 2005.

6. V. Darlagiannis, A. Mauthe, N. Liebau, and R. Steinmetz. An Adaptable, Role-
based Simulator for P2P Networks. In Proceedings of the International Conference
on Modeling, Simulation and Visualization Methods, pages 52–59, June 2004.

7. V. Darlagiannis, A. Mauthe, and R. Steinmetz. Overlay Design Mechanisms for
Heterogeneous, Large Scale, Dynamic P2P Systems. Journal of Networks and
System Management, 12(3):371–395, 2004.

8. N. G. de Bruijn. A combinatorial problem. In Proceedings of the Koninklije Ned-
erlandse Academie van Wetenshapen, pages 758–764, 1946.

9. K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan.
Measurement, Modeling, and Analysis of Peer-to-Peer File Sharing Workload. In
Proceedings of 19th ACM Symposium on Operating Systems Principles, October
2003.

10. R. Huebsch, J. M. Hellerstein, N. Lanham, B. Thau Loo, S. Shenker, and I. Stoica.
Querying the Internet with PIER. In Proceedings of VLDB’03, September 2003.

11. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, C. Wells, and B. Zhao. OceanStore: an Archi-
tecture for Global-scale Persistent Storage. In Proceedings of the 9th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 190–201. ACM Press, 2000.

12. Y. Liu, L. Xiao, and L. M. Ni. Building a Scalable Bipartite P2P Overlay Net-
work. In Proceedings of the 18th International Parallel and Distributed Processing
Symposium, April 2004.

13. D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-Theoretic Analysis of
Structured Peer-to-Peer Systems: Routing Distances and Fault Resilience. In Pro-
ceedings of ACM SIGCOMM’03, pages 395–406, August 2003.

14. B. Thau Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein. The Case for a Hybrid
P2P Search Infrastructure. In Proceedings of the 4th International Workshop on
Peer-to-Peer Systems (IPTPS04), February 2004.

15. E. Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A Survey and
Comparison of Peer-to-Peer Overlay Network Schemes. IEEE Communications
Survey and Tutorial, March 2004.

16. Q. Lv, S. Ratnasamy, and S. Shenker. Can Heterogeneity Make Gnutella Scal-
able? In Proceedings of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS02), March 2002.

17. E. P. Markatos. Tracing a large-scale Peer-to-Peer System: an hour in the life
of Gnutella. In Proceedings of the 2nd IEEE/ACM International Symposium on
Cluster Computing and Grid, pages 65–74, May 2002.

Caching Indices for Efficient Lookup in Structured Overlay Networks 93

18. P. Maymounkov and D. Maziéres. Kademlia: A Peer-to-peer Information System
Based on the XOR metric. In Proceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS02), 2002.

19. E. O’Neil, P. O’Neil, and G. Weikum. The LRU-K Page Replacement Algorithm
For Database Disk Buffering. In Proceedings of the 1993 ACM SIGMOD Interna-
tional Conference on Management of data, pages 297–306, 1993.

20. M. Portmann, P. Sookavatana, S. Ardon, and A. Seneviratne. The cost of peer
discovery and searching in the Gnutella peer-to-peer file sharing protocol. In Pro-
ceedings of the International Conference on Networks, pages 263–268, 2001.

21. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable Con-
tent Addressable Network. In Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, pages
161–172. ACM Press, 2001.

22. S. Rhea and J. Kubiatowicz. Probabilistic location and routing. In Proceedings
of the 21st Annual Joint Conference of the IEEE Computer and Communications
Societies, June 2002.

23. J. Robinson and M. Devarakonda. Data cache management using frequency based
replacement. In Proceedings of the 1990 ACM SIGMETRICS conference on Mea-
surement and modeling of computer systems, pages 134–142, 1990.

24. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), pages 329–350, 2001.

25. A. I. T. Rowstron and P. Druschel. Storage management and caching in PAST,
a large-scale, persistent peer-to-peer storage utility. In Symposium on Operating
Systems Principles, pages 188–201, 2001.

26. S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement Study of Peer-to-
Peer File Sharing Systems. In Proceedings of Multimedia Computing and Network-
ing 2002 (MMCN ’02), 2002.

27. I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek, Frank Dabek,
and Hari Balakrishnan. Chord: A scalable Peer-to-Peer Lookup Service for Internet
Applications. IEEE Transactions on Networking, 11(1):17–32, February 2003.

28. B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Haywood, J.-C. Hugly,
E. Pouyoul, and B. Yeager. Project JXTA 2.0 Super-Peer Virtual Network.
http://www.jxta.org/project/www/docs/ JXTA2.0protocols1.pdf, May 2003.

29. B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz.
Tapestry: A Resilient Global-scale Overlay for Service Deployment. IEEE Journal
on Selected Areas in Communications, 22(1):41–53, 2004.

A Semantic Marketplace of Negotiating Agents

Theodore Patkos and Dimitris Plexousakis

Institute of Computer Science, FO.R.T.H.
Vassilika Vouton, P.O. Box 1385, GR 71110

Heraklion, Greece
Fax: (+30) 2810391638

{patkos, dp}@ics.forth.gr

Abstract. Achieving interoperability and automation in job execution
is of utmost importance for next generation e-Commerce applications.
This paper proposes a design that integrates three prominent technolo-
gies: intelligent software agents, peer-to-peer networking and the Seman-
tic Web. SeMPHoNIA is an architecture for an agent-based marketplace,
utilizing knowledge from RDF product repositories, in an open peer-to-
peer environment. The platform defines the basic stages of the process of
e-trading, facilitating users in closing deals in automated manner. The
implementation of our approach is demonstrated in the context of auc-
tion scenarios. A performance evaluation of the system is also presented.

1 Introduction

The emergence and rapid development of electronic commerce has influenced
many fields of human activity and business industry, providing a gravity well,
which pulls a variety of diverse technologies and novel research efforts into closer
collaboration. Recent years have seen an enormous increase in the role of infor-
mation technology in markets, in particular the emergence of electronic market-
places [2]. The current economic trading sphere is structured on top of an open,
distributed, heterogeneous and, most often, unreliable environment.

Human participants are still actively involved in all stages of the buying pro-
cess. As the trend of e-Commerce continues though, an inevitable growth in the
number and features of on-line markets is observed, causing the task of moni-
toring and effective decision-making to become trivial and time-consuming for
humans. The increasing degree of heterogeneity and sophistication on both the
business and the customer side will cause interoperability and automation of ex-
ecution to become the most challenging tasks that next generation e-Commerce
applications will face.

In this paper we introduce the design and implementation of a system, called
SeMPHoNIA (Semantic Marketplace of Peers Hosting Negotiating Intelligent
Agents), for addressing issues of current e-trading [13]. The system integrates
and exploits three enabling technologies, namely intelligent software agents, peer-
to-peer systems and the Semantic Web, into a unified platform. It is an architec-
ture for an agent-based virtual marketplace structured on top of a peer-to-peer

Z. Despotovic, S. Joseph, and C. Sartori (Eds.): AP2PC 2005, LNAI 4118, pp. 94–105, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Semantic Marketplace of Negotiating Agents 95

network, utilizing semantic approaches. SeMPHoNIA could be considered as
what [6] describes as the third key actor in agent-mediated e-Commerce appli-
cations, apart from buyers and sellers: the market owner, an environment that
sets and controls the rules, in which buyers and sellers trade. The implementa-
tion of our approach is demonstrated in the context of auction scenarios. The
platform is intended to facilitate users in discovering and bidding across multiple
interrelated auctions with varying start and end times and protocols.

The rest of the paper is structured as follows. Section 2 presents an analy-
sis of SeMPHoNIAs architecture and components. Section 3 introduces a num-
ber of additional functionalities. An evaluation of the platforms performance is
presented in Section 4. Related work is discussed in Section 5 and the paper
concludes in Section 6 with final remarks.

2 SeMPHoNIA Platform Architecture

The SeMPHoNIA platform models aspects of market mechanisms that represent
a common interaction medium for users on the Internet. It integrates three preex-
isting technologies; JXTA [8] for configuring the peer-to-peer network, Grasshop-
per1 [4] for managing the multi-agent character of the system and ICS-FORTH
RDFSuite [7] for exploiting technologies of the Semantic Web. The JXTA Engine
module is responsible for implementing JXTA protocols to allow the application
to function as a peer, collaborate with other peers and deploy peer-to-peer ser-
vices. The Grasshopper Middleware module is the component that undertakes
the role of automating the negotiation procedure by creating, controlling and
monitoring software agents that represent human users. Finally, the Semantic
Search Engine module facilitates semantic publish and discovery of products on
the network, exploiting software tools provided by the ICS-FORTH RDFSuite,
such as RDF validation, storage and querying [1].

Three distinct layers of functionality synthesize the platforms behavior; its
semantic, its multi-agent and its peer-to-peer character. Before going into details
regarding the platform as a whole, we elaborate on the different layers and their
role in the system.

2.1 Semantic Character

Traditional Web-based product searching based on keywords seems insufficient
and inefficient in the ”sea” of information [10]. Especially in e-auction sites,
the current trend of searching numerous catalogues of available products is a
rigorous procedure. Instead, next generation e-markets should be able to han-
dle customer queries, such as ”Find all running English or Vickrey auctions of
1 IKV++ Technologies AG has recently announced its desire to abandon further devel-

opment efforts concerning the Grasshopper platform (fall 2004). This has no impact
on SeMPHoNIA whatsoever, since it does not depend on any specialized aspects
of Grasshopper. In fact, our next version of the system is developed using JADE
(http://jade.tilab.com/), which is also a FIPA-compliant multi-agent platform.

96 T. Patkos and D. Plexousakis

paintings created by impressionists of the 16th century”. Ontologies have shown
to be the right answer to knowledge structuring.

The SeMPHoNIA project applies to an open and heterogeneous environment.
For that purpose, we have developed two types of ontologies; process ontologies,
which are specifically about auction-related concepts and relations, as well as do-
main ontologies, which enrich product descriptions with metadata to accurately
describe their features. The former type serves transactional needs, while the
latter covers informational needs for product specifications. More specifically,
each item or auction session, is semantically described by a set of ontologies. Re-
tailers relate products with a specific domain and provide metadata about them
in the corresponding domain ontology. The auction ontology, on the other hand,
captures the characteristics of a particular auction session combining knowledge
from auction protocols and other common trading concepts to specify the con-
text, in which the system operates. It is used to model all information needed by
an auctioneer to initiate a new auction session and for a customer to determine
a desired session based on criteria, such as brokers identity, payment etc.

It has been argued that until now systems based on centralized ontology
schemes suffer from difficulties concerning development and maintenance [16].
Instead, the SeMPHoNIA infrastructure takes advantage of locally stored ontolo-
gies sharing common schema representation. The concept behind this design is
to use RDF-based reasoning for discovering, matching and filtering auction ses-
sions between peers. Ontologies structured in the platforms environment provide
the necessary semantics for all entities and agents, both human and software,
to share a common understanding of the world and the rules that govern it.
RDFS as a means of knowledge representation, as well as RDF schemas sizes
and morphologies have been studied in [11].

To allow product searching and enhance communication, ontology publish-
ing and querying techniques have been developed. Ontologies are published on
the network using both the products domain and URI. Thus, general search-
ing is supported that can result to a collection of domain-specific ontologies,
each of which is linked with the corresponding auction ontology, or on the other
hand, focused searching is possible, which returns specific product descriptions
and auction sessions. Querying is performed using RQL [9], a typed language
following a functional approach, which supports generalized path expressions,
featuring variables on both labels for classes and properties. RQL is considered
the most complete RDF query language in comparison to other popular ones,
according to elicitations extracted from recent evaluations ([5]). Software agents
forward RQL queries directly to the desired local ontologies.

2.2 Multi-agent Character

Agent technology represents a flexible way of conceptualizing and implementing
e-Commerce transactions. The ability of agents to exhibit automation in job exe-
cution, mobility, communication and collaboration with other agents is exploited
in SeMPHoNIA to reduce the tremendous time and human resources invested
in on-line trading. Specifically, agents are used to facilitate the connection of

A Semantic Marketplace of Negotiating Agents 97

buyers and sellers and to automate the process of negotiation in the context of
auction scenarios. In SeMPHoNIA, users may decide to participate in multiple
auctions at the same time, when the result of one auction may affect the action
taken for the other. Agents automate bidding actions and make inferences for
determining the optimum path, when interrelated auctions are involved, based
on the human users preferences and on their local knowledge.

We identify three types of agents operating in the SeMPHoNIA platform: A-,
C- and CL-agents. The A-agent (Auctioneer agent) is the auctioneers represen-
tative in the SeMPHoNIA network. It surveils and coordinates the execution
of a specific auction and is responsible for the enforcement of rules governing
the negotiation among all involved parties. The A-agent is aware of its owner’s
preferences, such as the auction’s type, reserve price, etc. This information is cap-
tured at the ontology that the user publishes. The agent also declares auction
termination and announces winning offers, according to the negotiation rules.

Customers in SeMPHoNIA may initiate one or more auction sessions, partic-
ipating concurrently in one or more auctions in each of them. Each session has
one coordinator agent, the C-agent (Customer agent), whose role is to manage
the distinct sub-tasks that a session is decomposed into. This agent represents
the users intelligent interface to the system, because it performs the necessary
actions to achieve the goal of purchasing the desired product with the best to
its owner profit among all auctions that it monitors. The C-agent controls the
allocation of bids across auctions, relying on information about their progress
and on its internal strategy, but does not participate in any of them directly.

CL-agents (Clone agents) are the actual participants in auctions conducted in
the SeMPHoNIA marketplace. These agents are created by the C-agent, inher-
iting the initial knowledge concerning the users preferences, i.e., the maximum
price they are allowed to spend for an item, the number of items they should
intend to acquire etc. They react to notifications sent by both the A-agent, in-
forming them about the progress of the auction they participate in, and the
C-agent, instructing them to continue bidding or postpone their execution, in
case this serves best the sessions evolution. CL-agents are specialized according
to the type of auction that has been assigned to them (English, Vickrey etc.)
and the bidding strategy that the user intends to follow (aggressive, last-minute
bidding etc.). They all possess the primal attributes and knowledge of the corre-
sponding C-agent, but present specializations in their behavior, justifying their
characterization as clones of the C-agent.

The structure of the multi-agent layer, along with the basic interactions be-
tween the various components, is presented in Figure 1. The structure of the
distributed agent environment is composed of agencies and places. An agency
is the actual runtime environment for agents and may be initiated on different
hosts on the network. A place provides a logical grouping of functionality inside
an agency. An important aspect of the multi-agent layer is that it takes advan-
tage of the mobility features of agents for enhancing performance. CL-agents
migrate to the place, where the auction is conducted, in order to communicate

98 T. Patkos and D. Plexousakis

Fig. 1. The multi-agent component

locally with the A-agent, eliminating network latencies. Therefore, a C-agent
may have multiple clones scattered across different agencies on different peers.

2.3 Peer-to-Peer Character

The functionality of the previously mentioned multi-agent layer is superimposed
on a peer-to-peer network structure, that harnesses the computing power of ca-
pable peers (resource sharing) and impels efficient ontology distribution across
nodes (knowledge sharing). SeMPHoNIAs peer-to-peer network is a typical
asynchronous-message-passing super-peer system that implements the auction
marketplace environment. Performance measurements in super-peer networks
([18]) have revealed the potential to combine the efficiency of a centralized
search with the autonomy, load balancing and robustness provided by distributed
searching. Since computing demands focus on agent operations, our concern is
to distribute agencies across peers in the network.

Three are the basic types of SeMPHoNIA peers: customer, auctioneer and
operator peers. Customer and auctioneer peers serve as single end users. Auc-
tioneer peers have the additional functionality of publishing their ontologies on
the network. Therefore, they are always accompanied by an ontology database,
along with the corresponding RDFServer, which acts as a mediator between the
database and the network. All simple peers are able to cache messages and route
them over all other peers in the cluster that they are connected to.

The third type of peer is the operator peer that acts as super-peer and pro-
vides zero or more agencies to the platform. Simple peers are connected to one
or more operator peers to ensure greater reliability and scalability. Since het-
erogeneity is a feature of peer-to-peer networks that can become profitable, if
taken into account, we consider operator peers to be nodes with high availabil-
ity and computing resources. Thus, they supply the medium, where all auction
operations take place. Operator peers interconnect forming a backbone of peer
clusters, so that whenever an operator peer leaves the network all agents running
on its agencies migrate to another operator. Besides, this interconnection allows
bridging remote clusters and permits the application of message propagation

A Semantic Marketplace of Negotiating Agents 99

algorithms to the underlying peers of each cluster, avoiding message flooding to
the entire network.

SeMPHoNIA peers advertise their services in language-neutral metadata
structures, represented as XML documents, called advertisements. Advertise-
ments are the basic unit of data exchanged between peers providing information
about available resources. All peers contribute to increasing the level of con-
nectivity to the overall network, by caching locally XML advertisements and
automatically delivering them to interested peers upon request, without any
need for human intervention. Advertisements are published inside a peer cluster
and are additionally broadcasted between operator peers. Thus, a simple peer
searching for available ontology advertisements of a specific domain broadcasts
the request to peers in its cluster and to the operator peers that is connected to.

An important notion of the SeMPHoNIA peer-to-peer architecture is its peer
grouping concept. Peer groups are used to promote trusted services, by seg-
menting the network space into distinct communities of peers participating in
an auction. For every auction listed on the network a new peer group is created
by the auctioneer peer and whenever a customer decides to participate in an
auction, it must first join the corresponding peer group. Only after the admis-
sion is granted, the peer is allowed to send agents to the auction place. This
authentication mechanism applied for joining peer groups before registering in
auctions can be extended to restrict entrance to specific members, provisioning
the creation of private or secure auctions, based on criteria, such as peer rep-
utation. We believe that security issues are better handled at the peer-to-peer
layer than at the multi-agent layer, due to the ability to combine restriction
mechanisms from both the lower physical level (encryption, authentication) and
the higher software level (trust models, trust content).

2.4 SeMPHoNIA Platform

The previously described functionalities of the system are integrated in the SeM-
PHoNIA platform to implement a complete and well-defined e-trading environ-
ment. This section presents how the different layers of functionality co-exist and
collaborate to synthesize the overall system infrastructure.

Figure 2 displays a snapshot of the system state at a random moment. The
middle part shows a fraction of the peer-to-peer network. Simple peers connect
with operator peers, which in turn interconnect with each other to form a net-
work of main channels. Advertisements travel between peers on the same cluster
or between operator peers and are cached at various nodes throughout their
path. These advertisements may describe resources, such as product domains,
ontologies, auction peer groups, agency addresses or just the presence of peers.
The lower part of the image depicts the correspondence between auctioneer peers
and their own auction peer groups, indicated by dashed-dotted lines. Auctioneers
may create multiple peer groups, one for every auction they conduct. This layer
also shows the virtual presence of customer peers in each peer groups. Last, the
upper part displays the multi-agent layer of the system, which is the component
that implements all auction sessions. The dashed-dotted line here implies the

100 T. Patkos and D. Plexousakis

Fig. 2. SeMPHoNIA platform elements, relations and interactions

relation between an operator peer and the agencies it offers. The other peers cre-
ate places for supporting negotiations and agents that travel between agencies.

3 Advanced Features

SeMPHoNIA is a virtual market architecture that includes numerous advanced
features for supporting users in accomplishing electronic negotiation tasks. This
section discusses some additional facilities that the platform integrates, which
provide the supplementary infrastructure needed to become a complete system.

3.1 Statistical Information Support

The history of bidding of a product and the auction statistics have gained im-
portance over the years, due to the increase in Internet-based auctions. This
information is valuable for future auctions, for assisting bidders in specifying
appropriate bids and sellers in setting the base prices. Currently, none of the
on-line auction sites give any information of such kind.

The SeMPHoNIA platform provides a special type of agent, whose role it to
yield feedback of previous auctions and produce valuable auction statistics. This
agent, named as S-agent (Statistical agent), automates the process of monitoring
auctions. It follows the same interaction mechanism as C-agents; it creates CL-
agents that travel to the remote place, where the auction is running, recording its
progress, while the master agent coordinates the session and extracts statistical
data obtained by all the clones. Auction statistics may include average winning
bids, price convergence behavior, equilibrium price, progress of bidding etc.

A Semantic Marketplace of Negotiating Agents 101

3.2 Agent Reasoning

SeMPHoNIA agents exhibit intelligent behavior. Regardless of their type, their
most important components are the communication module and the inference
engine. Due to space restrictions we only examine the latter.

In SeMPHoNIA, the most challenging task that agents are called to accom-
plish is that of bidding across multiple auctions with varying start and end times
and varying protocols, attempting to ensure that at most one of the desired items
will be purchased , thus procuring the best deal for the customer. The agent re-
sponsible for managing this task is the C-agent. Therefore, the implementation
of a sophisticated reasoning behavior for the C-agent is of vital importance for
the success of a profitable auction participation.

Our current approach is indicative and can be used as a reference point for
implementing more advanced strategies. The C-agent is designed to manage
multiple CL-agents and decide which of them should bid and which should wait,
according to the progress of their auction. Four are the basic constraints that the
C-agents logic mechanism is designed to comply with: Singularity Constraint ;
among clone agents, only one is allowed to be active at any particular moment
and, thus, permitted to place bids in its auction. The rest are set at a stand-by
mode, waiting for the C-agent to activate them. Exclusiveness Constraint ; while
the active clone holds the maximum bid in its auction, no other clone can be set
active, ensuring that no purchase at more than one sessions can be accomplished.
Optimum Path Constraint ; the intention is to always select as active the agent
that stays on the optimum path among all bidding sessions, meaning that it is the
one that maximizes the C-agents utility function. Eligibility Constraint ; clones,
while active, persistently pursues to hold the maximum bid of their auctions,
until reaching the offer limit, ensuring that if a purchase is profitable and it will
be accomplished.

3.3 Flexibility in Applying Custom Strategies

The design of SeMPHoNIAs agent architecture offers flexibility and extensibility.
Program developers can build custom strategies by creating new CL-agents with
advanced reasoning mechanisms. Application developers can manipulate CL-
agents as black boxes and utilize custom-built CL-agents to enhance interaction
with the system, without any need to re-design the entire negotiation template.

As a proof of concept of this design, apart from the popular iterative English
auction and the single-cycle Vickrey auction, both of which rely on a central
auctioneer to direct the session, in the context of the SeMPHoNIA project we
have developed a peer-to-peer continuous auction. The vast majority of on-line
auction houses perform centralized auctions, in which clients do not negotiate
with each other, but rather with the auctioneer exclusively, who distributes in-
formation about offers among them. However, peer-to-peer auctions receive in-
creasing attention, due to the absence of a central role and the drawbacks that
this scheme implies, as identified in [12]. In our peer-to-peer auction agents ne-
gotiate in pairs. Participants register in the auction and seek a random party to

102 T. Patkos and D. Plexousakis

negotiate with. The negotiation between any two agents is private, the winning
offer, though, is announced to the other participants and to the A-agent, in order
to update, if necessary, the current maximum offer of the auction. The A-agent,
throughout the evolution of the auction, preserves a passive role, guarding the
valid execution of the auction rules.

What is interesting is that the extension of the system with new negotiation
protocols, even when they present such vast differences as centralized and peer-
to-peer auctions, requires no modification in the platform. For the generation of
the peer-to-peer auction the only action required is the creation of the specialized
peer-to-peer CL-agent and the expansion of the A-agents auction ontology to
acknowledge the existence and features of such auctions. Neither the C-agent
nor the A-agent needs to have the protocol hard-coded explicitly beforehand.

4 Performance Evaluation

This section discusses the performance study of SeMPHoNIAs agent design. We
limit the demonstration of our evaluation on the multi-agent layer, for the sake
of clarity and expressiveness of results. The hypothesis that we seek to evalu-
ate is that our proposed negotiation scheme is scalable and performs efficiently
in a wide range of conditions. We measure the performance of our platform
in terms of negotiation rate and utilization factor (messages processed per sec-
ond). Following are the results obtained by running several test cases, including
simultaneous progression of multiple auctions.

To retain a common base line for our evaluations, each C-agent was given
a random maximum asking price ranging from 1 to 500 units and all English
and Peer-to-Peer auctions were evolving using an incremental step of 5 units
(we refer to such auctions with the abbreviation 500/5). All participants join
the auctions before their opening. In addition, we chose to implement the most
demanding scenario, where CL-agents inform their C-agents at every new bid
notification, reducing their performance, but increasing efficiency.

Our first measurement concerned memory demands. For a typical Java Virtual
Machine memory allocation (64Mb) a single operator peer can handle up to 600
agents, before running out of memory. If we consider the fact that the majority
of auctions held on eBay, the largest consumer-to-consumer auction site, have
an average of 20 to 40 bidders [19], then a single operator peer can host up to 15
parallel auctions. This we believe is a very satisfactory number for a distributed
system, such as SeMPHoNIA, which is designed to allocate services at multiple
peers across the network. Besides, it is also possible to extend the amount of
memory that JVM utilizes during a single execution, depending on the hosts
specifications.

The first set of test cases investigates how the behavior of the system changes
as we increase the number of agents negotiating, during a single auction. We
consider the English 500/5, the Peer-to-Peer 500/5 and the Vickrey auctions.
Figures 3a and 3b display the time needed for each auction to converge to the
equilibrium price and the computational needs, respectively. Although time itself

A Semantic Marketplace of Negotiating Agents 103

Fig. 3. a) Single-auction convergence rate, b) Utilization factor for a single auction, c)
Multi-auction convergence rate, d) Number of active clones changed in a session

is not a metric, since it depends on the hosts characteristics, the diagrams are
useful in studying the systems scaling, when reaching its memory limits. What is
interesting in these diagrams is that the systems performance as load increases is
satisfactory, even when it reaches its limits. In particular, the utilization factor
increases up to a certain upper limit and then starts diminishing. This upper
limit is the point at which the maximum number of messages can be processed,
maximizing the performance gain. Below that point, the computational needs
are so great that no resources are available for handling all messages arriving
or departing. We measured that the utilization factors upper limit is reached at
around 90 agents for the English auction and 200 agents for the peer-to-peer
auction (we note that the behavior of these two type of auctions agree with
observations made in [12] simulating negotiations with 2,500 to 160,000 agents).

The second set of test cases considers the parallel execution of multiple English
500/5 auctions that start simultaneously. Figure 3c compares the convergence
rate in 2 and 4 parallel auctions. No significant difference is observed when few
bidders are present. When this number increases, though, we see that bidding
in only two auctions is less efficient than bidding in four. To understand why
this holds, we need to investigate the behavior of agents in each case. Figure
3d explains how they behave in parallel auctions. When only two auctions are
running, C-agents tend to focus on only one of them, resulting in a scheme
where bidders are split between the two and behave as if only one were active.
This causes the auctions to take more time to converge. Increasing the number
of concurrent auctions, parallelism is improved. The reason why parallelism is
not promoted with two auctions is because new offers are accepted faster than
required for an agent to infer whether to change its current auction or not.
Especially when the number of participants becomes high (more than 160), the
computational needs increase as well, causing greater latencies in the time it
takes for an agent to decide on an action.

104 T. Patkos and D. Plexousakis

5 Related Work

The SeMPHoNIA project addresses issues that extend to most phases of e-
trading, exploiting technologies concerning multi-agent, peer-to-peer and the
Semantic Web areas. Several projects deal with some of those issues, but few
confront the problems of heterogeneous distributed negotiating environments in
their entirety.

The Travel Agent Game in Agentcities (TAGA) [14] is a general framework for
running agent-based market simulations that extend and enhance the Trading
Agent Competition (TAC) [17] scenario. TAGA runs on an open, multi-agent
environment based on FIPA compliant platforms and uses Semantic Web lan-
guages and tools (RDF and OWL) to specify and publish the underlying com-
mon ontologies [20]. TAGAs objectives are very much in common with those
of SeMPHoNIA; it offers an environment for exploring agent-based trading in
dynamic markets, it supports semantic querying and publishing and it allows
users to create their own reasoning mechanisms for their agents. TAGA offers a
controlled environment, specialized in settled trading scenarios and based on a
centralized infrastructure. SeMPHoNIA, on the other hand, provides openness
and interoperability and is based on a peer-to-peer structure that approximates
more realistic matchmaking and trading mechanisms. Moreover, SeMPHoNIA
places emphasis on local negotiations between agents of remote peers, achieving
efficiency in trading, as well.

Outside of, but related to, the auction scenario, automated negotiation rep-
resents an important issue of the SeMPHoNIA project. [15] attempts to address
the problem of automated agent negotiations in open environments, where the
negotiation protocols are not known beforehand, but instead the host advertises
the type of protocol regulating the interaction. A shared ontology of protocols
is defined based on the idea that some general concepts are present in any nego-
tiation protocol. Moreover, a method ontology, written in DAML+OIL, aims at
modelling knowledge about the interactions between agents on how to perform
a task. SeMPHoNIA is able to integrate similar techniques. It should be noted,
though, that it is still at an early stage of development and other issues need to
be investigated, such as completeness of ontological protocol representations.

6 Conclusions

We have presented the design and implementation of SeMPHoNIA, a system
that integrates three emerging technologies; intelligent software agents, peer-
to-peer networking and the Semantic Web. Our primary motivation has been
to demonstrate the power of combining these three technologies in facilitating
human participation in next-generation e-Commerce transactions. The system
realizes auction scenarios as a general negotiation framework, while maintaining
a flexible design that allows experimenting with new techniques.

A Semantic Marketplace of Negotiating Agents 105

References

1. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle K.: The
ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases. Proc. of
the 2nd International Workshop on the Semantic Web (SemWeb’01) in conjunc-
tion with 10th International World Wide Web Conference (WWW10), Hong-Kong
(2001) 1-13

2. Bichler, M., Field, S., Werthner, H.: Introduction: Theory and Application of
Electronic Market Design. Electronic Commerce Research Journal, Vol. 1 (2001)
215-220

3. FIPA Specifications, http://www.fipa.org/specifications/
4. Grasshopper web site, http://www.grasshopper.de
5. Haase P., Broekstra J., Eberhart A., Volz R.: A Comparison of RDF Query Lan-

guages. S.A. McIlraith et al. (Eds.): ISWC (2004), LNCS 3298 (2004)
6. He, M., Jennings, N. R., Leung, H. F.: On Agent-Mediated Electronic Commerce.

IEEE Transactions on Knowledge and Data Engineering, Vol. 15, No. 4 (2003)
7. ICS-FORTH, The ICS-Forth RDFSuite web site, http://139.91.183.30:9090/RDF
8. JXTA Project, http://www.jxta.org
9. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:

RQL: A Declarative Query Language for RDF. 11th International World Wide
Web Conference (WWW02) Honolulu, Hawaii, USA (2002)

10. Lee, R. S.T., Liu, J. N.K.: iJADE eMiner - A Web-Based Mining Agent Based on
Intelligent Java Agent Development Environment (iJADE) on Internet Shopping.
D. Cheung, G.J. Williams, and Q. Li (Eds.): PAKDD 2001, LNAI 2035 (2001)
28-40

11. Magkanaraki, A., Alexaki S., Christophides V., Plexousakis, D.: Benchmarking
RDF Schemas for the Semantic Web. In: First International Semantic Web Con-
ference (ISWC’02), Sardinia, Italy, June 9-12 (2002) 132-146

12. Ogston, E., Vassiliadis, S.: A Peer-to-Peer Agent Auction. AAMAS02, Bologna,
Italy, (2002)

13. Patkos, T., Plexousakis, D.: A Semantic Marketplace of Peers Hosting Negotiating
Intelligent Agents. Proceedings of the CAiSE’05 Forum, O. Belo, J. Elder, J. Falcao
e Cunha, O. Pastor (Eds.), Portugal (2005) 3-8

14. TAGA web site, http://taga.umbc.edu (2004)
15. Tamma, V., Wooldridge, M., Blacoe, I., Dickinson, I.: An Ontology based Approach

to Automated Negotiation. In Proceedings of the 4th International Workshop on
Agent-Mediated Electronic Commerce, Bologna, Italy (2002)

16. Terziyan, V., Zharko, A.: Semantic Web and Peer-to-Peer: Integration and In-
teroperability in Industry. In: International Journal of Computers, Systems and
Signals, IAAMSAD, ISSN 1608-5655, Vol. 4, No. 2 (2003) 33-46

17. Wellman, M. P., Greenwald, A., Stone, P., Wurman, P. R.: The 2001 Trading
Agent Competition. 14th IAAI Conference, Edmonton (2002)

18. Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network. IEEE International
Conference on Data Engineering, San Jose, California, (2003)

19. Yang, I., Jeong, H., Kahng, B., Barabasi, A. L.: Emerging behavior in electronic
bidding. Physical Review E 68, 016102, The American Physical Society (2003)

20. Zou, Y., Finin, T., Ding, L., Chen, H.: Using Semantic Web Technologies in Multi-
Agent Systems: a case study in the TAGA trading agent environment. Proceedings
of the 5th International Conference on Electronic Commerce, Pittsburgh, Pennsyl-
vania (2003) 95-101

Semantic Web Service Composition Through a
P2P-Based Multi-agent Environment

Peep Küngas1 and Mihhail Matskin2

1 Norwegian University of Science and Technology
Department of Computer and Information Science

Trondheim, Norway
peep@idi.ntnu.no

2 Royal Institute of Technology
Department of Microelectronics and Information Technology

Kista, Sweden
misha@imit.kth.se

Abstract. This paper describes a multi agent system (MAS) for distributed com-
position of Semantic Web services. Since our system is intended to function in
highly dynamic environments, where heterogeneous agents rapidly join and leave
the system, we consider P2P approach as most suitable for facilitating agent and
service discovery. The MAS is based on Chord P2P network, which allows the
MAS to dynamically publish and locate available Semantic Web services, which
are specified with OWL-S. In order to compose new Web services from existing
ones, agents apply symbolic reasoning in a cooperative problem solving manner.

Keywords: Semantic Web services, multi-agent systems, P2P.

1 Introduction

The increasing popularity of P2P systems (such as Overnet, Kazaa and Gnutella) for
file sharing, indicates general interest in resource sharing. However the current P2P
systems suffer at least from two drawbacks. First, they are mostly designed for sharing
either data or CPU power, but not both in the same system. Moreover, in the case of CPU
sharing, the executable computational processes are expected to be known a priori for
each participant (like in SETI@Home). Second, the current P2P network nodes still lack
a degree of proactivity, which would provide higher degree of autonomy, rationality and
fairness.

In contrary, multi agent systems (MAS) still seem to lack enough capabilities to re-
organise themselves in dynamic environments. In particular, despite of the intelligent
behaviour assigned to agents, MAS architectures are currently mostly designed manu-
ally. Therefore combining MAS-s and P2P networks would extend the capabilities of
both architectures.

Recently many articles, related to automated composition of (Semantic) Web ser-
vices [1, 2], agent technologies and P2P networks [3, 4, 5, 6, 7] (see Section 7 for a
review) have been published. Although many of them [8, 9, 10, 11, 12] discuss a com-
bined approach, to the best of our knowledge there are currently no systems available,

Z. Despotovic, S. Joseph, and C. Sartori (Eds.): AP2PC 2005, LNAI 4118, pp. 106–119, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Semantic Web Service Composition Through a P2P-Based Multi-agent Environment 107

which apply agent technologies to distributed composition of Semantic Web services
over structured P2P networks.

Our goal is to construct a system, which would allow users to seamlessly integrate
the available Web services and support the exchange data. Emergence of the Semantic
Web has resulted in a uniform view to data and computational resources. Describing
both data and Web services as semantic objects allows to move from data sharing and
service sharing to resource sharing in a unified infrastructure. We are going to exploit
this uniform view while discovering particular resources in our system.

In this paper we describe an implementation of a MAS where agents cooperatively
apply distributed symbolic reasoning for discovering and composing Semantic Web ser-
vices. A structured P2P network is used to self-organise MAS infrastructure for efficient
resource discovery.

Using a Semantic Web service description in an OWL-S-like language significantly
increases to amount of semantic information available for discovering requested ser-
vices. In addition, if no services satisfying user requirements are found, then coop-
erative problem solving (CPS) is applied for dynamic construction of new composite
Web services. The general structure of our system, supporting Semantic Web services
composition, is depicted in Figure 1.

P2P network

Translator
Profile

OWL−S Service−

LL PD Engine

OWL−S Service−
Model

Domain
Ontology

MAS for CPS

Internet

LL proof LL formulae

Web service composition

Fig. 1. The system architecture

Our Web service composition process reads input (available atomic Semantic Web
services and the requested one) from OWL-S ServiceProfile, transforms it into Lin-
ear Logic (LL) formulae and applies Partial Deduction (PD) to find (partial) solutions
for a request. During PD attached domain ontologies are used to reason over the se-
mantics of Web services’ inputs and outputs. Partial solutions can be extended through
our CPS framework until a complete solution has been found. Complete solutions are
transformed into OWL-S ServiceModel and the result is returned to the requester.

This approach allows exploitation of Web services in a MAS, which is expected to be
distributed over the Internet. The usage of agent technologies allows us to take advan-
tage of agent communication languages, which are well-suited for delivering semantic

108 P. Küngas and M. Matskin

information. Additional agent techniques could be used as means for controlling access
to Web services and other resources that agents possess.

The rest of the article is structured as follows. In Section 2 we briefly introduce
our method for (distributed) composition of Web services. Section 3 describes how we
are going to use Chord P2P network in our application. The architecture of our MAS
is presented in Section 4. Section 5 demonstrates the usage of our system, while our
composition method is evaluated in Section 6. The latter section discusses in which
cases the usage of P2P is justified in our MAS. Section 7 reviews related work and
Section 8 concludes the paper and discusses further research.

2 Distributed Composition of Semantic Web Services

Recently Rao et al [13] presented a Semantic Web service composition process, which
applies linear logic (LL) [14] for Semantic Web service representation and LL theorem
proving for Semantic Web service composition. They also described mappings from
DAML-S language to LL and from a LL proof to BPEL. This formal framework has
been applied in a distributed way [11] in a mediator-based MAS with multiple me-
diators. The general topology of the previously proposed architecture is depicted in
Figure 2, where agoras represent mediators with extended capabilities.

Fig. 2. Agora agent architecture

However, the paper [11] does not explain how Web service provider agents select
mediators where to register themselves and how new mediator agents are selected and
organised. In this paper we extend the former framework and show how new mediators
are selected and organised in P2P manner. We also show that P2P approach gives greater
scalability of the system with many nodes compared to a manual approach of setting up
mediators.

In order to understand better how we represent Semantic Web services, agents’ goals,
and how service composition works, let us consider a scenario, where we have two
agents—a traveller (T) and a flight company (F). Let S, G and Γ denote respectively
available resources, goals and capabilities (Semantic Web services) of agents. Available
resources and goals represent respectively the inputs and outputs of a (composite) Web
service, which is required by an agent.

The goal of T is to make a booking (Booking) for a specific itinerary. Initially T
knows only its starting (From) and final (To) location. Additionally the agent has

Semantic Web Service Composition Through a P2P-Based Multi-agent Environment 109

2 local Web services running, findSchedule and getPassword , for finding a sched-
ule (Schedule) for a journey and retrieving a password (Password) from its internal
database for a particular Web site (Site).

From the overall set of LL operations, the following example contains multiplica-
tive conjunction (⊗), linear implication (�) and “of course” operator (!). In terms of
resource acquisition the logical expression � A⊗B � C ⊗D means that resources C
and D are obtainable only if both A and B are available. If the implication is applied,
A and B are consumed and C and D are produced. Formula !C means that the usage
of resource C is unbounded.

Goals, resources and capabilities of agent T are described in LL with the following
formulae.

GT = {Booking}, ST = {From ⊗ To},

ΓT =
� From ⊗ To �findSchedule Schedule,
� Site �getPassword Password .

For booking tickets, traveller agent T should contact an airline company. The airline
companyF does not have any explicit declarative goals (that is common for companies,
whose information systems are mainly based on business process models). The only fact
that F exposes, is the company Web site (Site). Since the fact is unbounded it can be
delivered to customers any number of times (this is denoted by ! in the example).

Agent F has 2 local Web services running—bookFlight for booking a flight, and
login for identifying customers and creating secure channels for information transfer.
We assume that a customer has created a personal profile at the airline company includ-
ing customer’s credit card information. Therefore the customer does not have to provide
this information explicitly. Goals, resources and capabilities of the airline company F
are described in LL with the following formulae.

GF = {1}, SF = {!Site},

ΓF =
� SecureChannel ⊗ Schedule �bookFlight Booking ,
� Password �login SecureChannel .

In the preceding we used linear logic (LL) to encode the capabilities of agents. LL is
a refinement of classical logic introduced by J.-Y. Girard to provide means for keeping
track of “resources”. In LL two assumptions of a propositional constant A are distin-
guished from a single assumption of A. This does not apply in classical logic, since
there the truth value of a fact does not depend on the number of copies of the fact.
Indeed, LL is not about truth, it is about computation.

3 P2P Network Layer

Since we assumed that in our application we can map each resource to an integer key,
we chose to take advantage of a structured P2P network, namely Chord [15]. Structured

110 P. Küngas and M. Matskin

P2P systems provide scalable resource-location mechanism compared to non-structured
networks, where the network is flooded with messages in order to locate resources.

Generally, the Chord protocol consist of a consistent hashing function to provide
unique key assignments for each node/object in the network. With the key’s value each
node can determine its logical position in the system. In Chord the logical position of a
node is a point in a circular key space. For example, Figure 3 presents an instance of a
Chord network topology for a key space with length 32. Black dots represent nodes in
the network and white dots represent keys that are not used.

31 0

4

18

22

27
28

Fig. 3. A Chord network example

In order to maintain the ring structure of the network, each node constantly updates
its predecessor and successor nodes in the network. These are the nodes which imme-
diately precede or succeed, respectively, a node in the circular key space. As long as
predecessors and successors of all nodes are updated, nodes are guaranteed to be found
in the network. Thus if one node has to locate a peer holding a particular key, a mes-
sage could be sent either to its successors or predecessors in the circular key space until
it reaches the correct location. This process is made more efficient by using routing
tables, which allow to bypass many nodes at once when forwarding a message to its
destination.

Each node in the network maintains its personal routing table with N records for 2N

key space. Each record points to a successor of a key, which is at distance of 2i, i =
0 . . .N − 1 from the key, which identifies the node. A routing table of node 27 of
Chord network in Figure 3 is represented for example in Table 1. Now, if peer with key
27 wants to deliver a message to the peer with key 22, then according to this routing
table the message would be sent initially to a peer with key 18 (the peer with a closest
preceding key to 22) and the peer with key 18 would forward the message further.

In order to apply Chord network and its object location mechanism for Semantic
Web service composition, we have to implement a mapping from objects to indices. In
this article we consider objects to be the names of inputs and outputs of Semantic Web
services. Additionally we assume that agents share the same ontology. Thus we can just
apply a hash function from an object name to an integer key such that the objects with
the same intended meaning would have the same key.

However, in large P2P networks different agents tend to use different ontologies.
Therefore we recognise the need for a function, which would transform concepts from

Semantic Web Service Composition Through a P2P-Based Multi-agent Environment 111

Table 1. Routing table of node 27 in Figure 3

Index Key Node
1 27 + 20 = 28 28
2 27 + 21 = 29 31
3 27 + 22 = 31 31
4 27 + 23 = 3 4
5 27 + 24 = 11 18

different ontologies, but with the same meaning, to the same key or to similar keys. One
way to overcome this problem might be to annotate all concepts with sets of keywords.
Then Latent Semantic Indexing or some other information retrieval algorithm [16] could
be applied for computing a unique value to a particular set of keys.

Alternatively, if objects have been annotated with keywords, Hilbert space filling
curves (SFC) could be applied for mapping an n-dimensional keyword space to
1-dimensional hash value space. This approach has been used by Schmidt and Parashar
[17] for locating Web services at Chord P2P network. Unfortunately we could not apply
their results directly in our system, since Schmidt and Parashar described Web service
classification with keywords, while we need to annotate the inputs and outputs of Web
services.

4 The MAS Architecture

Our MAS architecture is designed as a layer on top of Chord P2P network. While P2P
handles issues related to indexing and efficient location of resources, agents initiate
these actions in P2P networks. In our case agents use the P2P network for discovering
other agents, whose Web service descriptions include particular literals (names of inputs
and outputs). Thus our MAS could be seen as an application layer of a P2P network,
whereas P2P network is just another medium for MAS.

In order to facilitate efficient location of related agents, one agent per each literal is
designated to mediate access to other agents interested in particular literals. Since an
agent specification usually includes more than one literal, a single agent may mediate
several keys. When an agent joins the network, it first determines whether there are
already agents mediating some of its keys. If there is no mediator for particular keys,
the agent joins the network as a mediator for these keys. In the case there exists a key
mediator, the agent registers itself at the particular mediator. Mediators are organised
according to Chord algorithm.

A mediator could be seen as a kind of superpeer, which facilitates communication
between agents sharing a particular key. In order to apply Chord P2P network for our
purposes, literals in Web service specifications are transformed into integer keys, where
a key is the result of the mapping from a literal (concept name). An instance of our
network topology is presented graphically in Figure 4. The inner circle there represents
mediators in the Chord network while auxiliary nodes represent mediated agents.

If an agent has to send a task to other agents, then literals in the task are identi-
fied, transformed to keys and the task would be delivered to mediators taking care of

112 P. Küngas and M. Matskin

Fig. 4. Example P2P network topology

particular keys. Then these mediators shall multicast the message to agents, which are
registered at these mediators. If the mediated agents would like to deliver a message
to other mediators, then they first send a message to their mediator and this mediator
shall forward the message to other mediators. If an agent has registered itself at several
mediators, then the messages would be sent to the most preceding mediator of a partic-
ular key. In this case multicast is implemented on top of a P2P network. If a mediator
considers leaving the system, then it delegates its tasks to one of the agents which is
registered at this mediator. However, if a mediator does not have any agents registered
at itself, then the key disappears from the network.

Since the network of agents and the set of literals is constantly evolving, we would
not be able to manually set up mediators, unless we would designate a single agent for
mediating all others. The manual approach could work in small or static systems but
not in large and dynamic ones.

One disadvantage of P2P networks is that extra efforts are needed to keep them stable
and consistent. A Chord network is defined to be stable if successors and predecessors
of all nodes are correct. If a network is not stable, then it may break into clusters and
there is no guarantee anymore that required resources will be located.

In order to keep the network stable, we would still like to preserve some degree of
centralisation in future. Namely, we envisage that there are entities, which monitor the
evolution of the network and try to detect and resolve anomalies. Anyway, indexing and
search would be still organised in the distributed manner.

5 Elaboration of an Example

Let us consider again the agent/service specifications from Section 2. The specifica-
tions of agents T and F form a domain, which consists of 7 literals—From, To,

Semantic Web Service Composition Through a P2P-Based Multi-agent Environment 113

SecureChannel , Booking , Schedule , Site and Password . The 4 last literals are shared
by both agents. This means that they shall compete for the right to mediate these literals.

Let us assume that these 7 literals are mapped to keys 0, 4, 18, 22, 27, 28 and 31,
respectively. To demonstrate the interaction between agent- and P2P-related concepts
we additionally assume that agent T would mediate keys 0, 4, 22 and 28, while F
would mediate 18, 27 and 31. This configuration is summarised in Table 2.

Table 2. Keys and mediators of literals

Literal Key Mediator
From 0 T
To 4 T
SecureChannel 18 F
Booking 22 T
Schedule 27 F
Site 28 T
Password 31 F

getPassword

findSchedule

login

bookFlight

Password

Schedule

Booked

Site

Agent T Agent F

Fig. 5. The composite Web service

Given its specification, agent T derives and sends out the following task (see [11]
for how this and the following tasks were derived):

Schedule � Booking .

This task would be sent to mediators of literals Schedule and Booking , which are
Chord nodes 27 and 22. These mediators would start solving the task and also multicast
the task to registered agents. Since we have currently only 2 agents in the network, then
the message would be sent only to agent F .

Agent F merges the task with its current state !Site � 1 and as a result achieves task
!Site ⊗ Schedule � Booking . Since F cannot satisfy the proposal, it derives a new task
and forwards it to agent T :

114 P. Küngas and M. Matskin

Site � Password .

Agent T deduces the task further and constructs the final composite Web service.
Thereby T produces, with help of F , a composite service, whose execution achieves the
goal of agent T . The resulted composite service is graphically represented in Figure 5.
The service composition is finally translated to a process description languages like
OWL-S process model or BPEL4WS. The exact translation process is described in [13].

6 Empirical and Analytical Evaluation

In order to evaluate our architecture and the CPS method, we chose to measure the
number of messages, which were sent by agents until all agents solved their problems
(each agent had to compose a Web service). We considered 4 different methods for
message distribution:

1. multicast—each agent delivers its messages through a mediator to agents, whose
domain includes any of the literals in a derived partial solution

2. broadcast—each agent deliveres its messages to all other agents in the system
3. simple P2P—before delivering each message, the mediators of potentially inter-

ested agents are located and then the message is delivered to them
4. P2P with caching—the same as simple P2P with the only difference that the location

of each mediator is discovered only once per runtime and is cached for further use

While data for multicast and broadcast was acquired through experiments, the results
for the P2P versions are estimated analytically. For analytical evaluation we assumed
that our P2P architecture performs equally with the mediator-based agent architecture
with a difference that extra messages should be sent to discover particular mediators.
Additionally we assumed that our key space is 1024 to accommodate 1000 concepts.
This implies that in order to discover a mediator, generally log21024 = 10 messages
should be sent in Chord network. Therefore, to evaluate the maximum cost of P2P, we
multiplied the number of messages, exchanged during multicast, by 10. However, if we
assume that each peer applies caching, then we could use a function max(N ∗A+m, p)
to evaluate the message burden. N , A, m, p in the formula represent respectively the
numbers of concepts, agents, multicast messages and worst case P2P communication
messages sent. This function reflects that in the worst case each peer has to discover and
cache the locations of all keys/concepts in the systems. We do not consider the number
of stabilisation messages, while evaluating the cost of using P2P.

Experiments with multicast and broadcast were performed with 10, 20, 50 and 100
agents. With each set of agents the same set of service and task specifications was used
with both broadcast and multicast. We ran each experiment with each set of agents 5
times. The overall domain, where the names of services’ inputs and outputs were ran-
domly selected, consisted of 1000 concepts. We made experiments with 2 configurations:

1. each agent published 4 Web services, a required composite Web service consisted
of at least 3 Web services

2. each agent published 5 Web services, a required composite Web service consisted
of at least 5 Web services

Semantic Web Service Composition Through a P2P-Based Multi-agent Environment 115

 100

 1000

 10000

 100000

 1e+06

 20 40 60 80 100

M
es

sa
ge

s

Agents

multicast
broadcast
P2P, est.

P2P with caching, est.

(a) Minimum solution length 3

 1000

 10000

 100000

 1e+06

 20 40 60 80 100

M
es

sa
ge

s

Agents

multicast
broadcast
P2P, est.

P2P with caching, est.

(b) Minimum solution length 5

Fig. 6. Messages sent during problem solving

The results of configuration 1 and 2 are respectively summarised in Figure 6(a) and
Figure 6(b). Both figures show how many messages in average were sent during prob-
lem solving, before all agents found their solutions. Figure 7 demonstrates the exponen-
tial complexity of the problem solving methodology (with 10 agents), which is bound
to the complexity of LL. Although there exist logics with polynomial complexity [18]
for solving the similar problem, their expressive power is far behind LL.

Figure 6(a) and Figure 6(b) show clearly that with few agents in a network (less
than 50 in Figure 6(a)) broadcast is generally better than P2P topology. However, if the
number of agents and services increases, P2P with caching becomes a better choice than
broadcast. Moreover, both figures show a tendency that while the number of agents and
services grows in the network, the difference between P2P with caching and multicast
becomes proportionally smaller. Therefore we conclude that if the number of concepts
in the network is constant and the number of peers approaches infinity, P2P is almost
as good as multicast, if we do not consider the number of messages sent during Chord
stabilisation procedure. Anyway, the assumption that the number of concepts is fixed
and the number of agents grows, could be interpreted as that in small networks several

 100

 1000

 10000

 100000

 1e+06

 2 4 6 8 10

M
es

sa
ge

s

Solution length

multicast

Fig. 7. Problem solving complexity

116 P. Küngas and M. Matskin

concepts should be clustered together to achieve higher efficiency. The smaller concept
space would mean less mediators and less messages for mediator discovery.

7 Related Work

A thorough analysis of major P2P technologies has been published by Milojicic et al [7]
and would not be reviewed here. Anyway, several authors [9, 10] have considered P2P
networks for Web service applications. Additionally some works even consider seman-
tical issues in P2P networks. Broekstra et al [5], for instance, set their main emphasis
to knowledge representation and management in query processing in P2P. Due to het-
erogeneous nature of knowledge there certain conventions have to be introduced to
semantic reasoning process.

Crespo and Garcia-Molina [6] consider the construction of semantic overlay net-
works for P2P systems. Their contribution is a method for automatic clustering of P2P
networks to semantic overlay networks according to agent properties given by the se-
mantics of their content. A peer may belong to several overlay networks if it encapsu-
lates data with different semantics. Such a clustering allows query routing according to
its content. Since the message is sent directly to affected parties, the number of mes-
sages for resource location is significantly decreased.

Bawa et al [4] propose a P2P network topology, where the network is clustered into
segments by topics. In this case short distance links connect peers sharing the same
topic, while long distance links connect peers at different segments. For each topic
a centroid is constructed, which represents a centerpoint for a topic. In our network
a centroid is represented with a literal. Thus each literal in the system represents a
centroid. Peers may be connected to several centroids simultaneously. Thus although
we apply Chord [15] ideology and protocols for managing our P2P network, we have a
subnetwork for each literal. Each peer may have several identification codes—one for
each subnetwork.

Verma et al [19] consider a P2P infrastructure for publishing and discovering seman-
tically enriched descriptions of Web services. Anyway, they still use UDDI mechanism
for publishing Web services, whereas UDDI structures are used for storing semantic in-
formation about inputs and outputs of Web services similarly to Paolucci et al [20]. Our
approach allows to bypass the usage of centralised servers for Web service discovery
though we do not neglect their possible usage, if they could provide semantic content
as well.

Paolucci et al [12] implement a P2P service discovery mechanism through the usage
of Gnutella P2P network. Discovery process is based on reasoning over DAML-S de-
scriptions of Web services. Java Expert System Shell (JESS) is applied as a DAML-S
inference mechanism and is engaged to determine whether a service satisfies a query.
The approach is suitable in cases where atomic Semantic Web services are known a pri-
ori and semantically equivalent or similar services have to be discovered. Anyway, dur-
ing automated composition it is not known, which atomic services would be included
in the a resulting composite service. Thus their approach is not particularly suitable for
automated composition as we consider it here.

Semantic Web Service Composition Through a P2P-Based Multi-agent Environment 117

Arpinar et al [8] apply similarily to us automated Web service composition over a
P2P network. In their P2P architecture peers are organised into communities such that
each community involves peers, which represent the same domain. DAML-S is used
for describing Web services and queries (composite Web service interfaces). The major
difference between our ideology and the one presented by Arpinar et al is that they try to
determine links between Web services at publishing time, while we do it at composition
time. While our approach is more flexible and suits better to highly dynamic networks
with a moderate amount of queries, their approach is definitely more suitable for more
stable networks with massive amounts of queries. Anyway, their method does not con-
sider the non-monotonicity of Web services, which is handled by our methodology.

Finally, research on symbolic reasoning over P2P has been considered by Adjiman
et al [3], who implemented a P2P network for distributed theorem proving over propo-
sitional classical logic clauses. The underlaying network is based on small world topol-
ogy, where each peer has a list of other peers, who share the same literals (parts of a
theory) as the agent does.

8 Conclusions and Future Work

In this paper we described an implementation of a MAS for distributed composition of
Semantic Web services. The MAS applies P2P networking for reorganising and config-
uring its mediators. The main purpose of the mediators is to group agents which share
a part of a domain. From service composition point of view these are agents, whose
services’ inputs or outputs include a common object (literal at the formalisation level).
If agents have been gathered in such a way, their location over a distributed system is
more efficient and reliable than in nonstructured distributed systems.

Although our system can function without the P2P architecture, we believe that P2P
would give some added value to our MAS, especially when it comes to balancing mes-
sage load between agents. In fact, our empirical/analytical results show that in a system
with an increasing number of Semantic Web services and agents, our P2P approach
would mean almost the same message load as a system with mediator-based multicast.
However, with P2P architecture message load between agents is balanced more evenly
compared to a system with multicast, where all messages are routed through a central
mediator. Additionally, the usage of P2P would eliminate the central point of failure in
the whole system.

In order to facilitate semantic reasoning during the composition process, we would
like to design a function, which would map objects with the similar meaning to a similar
integer key. This would allow us to be sure that the objects/concepts with the same
meaning are in the same neighborhood. One possible solution has been proposed by
Tang et al [21] who consider semantics in P2P systems. They adopt Latent Semantic
Indexing (LSI) for information retrieval in Content-Addressable Networks (CAN). The
semantics of a document is described with a set of keywords.

Currently we are considering options for mapping the entire structure of LL formu-
lae to P2P networks instead of inputs and outputs only. Such a method would obviously
allow us to exploit richer structural semantics of Web services already at P2P level. An-
other thread of our current research is devoted to meaning negotiation between agents.

118 P. Küngas and M. Matskin

Given the heterogeneity of ontologies in agent systems, meaning negotiation would
provide means for mapping ontologies on the fly during agent interaction.

Acknowledgements

This work was partially supported by the Norwegian Research Foundation in the frame-
work of Information and Communication Technology (IKT-2010) program—the ADIS
project. The authors would like to thank the anonymous referees for their comments.

References

1. McIlraith, S., Son, T.C.: Adapting Golog for composition of Semantic Web services. In:
Proceedings of the Eighth International Conference on Knowledge Representation and Rea-
soning (KR2002), Toulouse, France, April 22–25, 2002, Morgan Kaufmann (2002) 482–493

2. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S Web Services com-
position using SHOP2. In: Proceedings of the 2nd International Semantic Web Conference,
ISWC 2003, Sanibel Island, Florida, USA, October 20–23, 2003. (2003)

3. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Distributed reasoning in
a peer-to-peer setting. Technical report, LRI, Université Paris Sud, France (2004)

4. Bawa, M., Manku, G.S., Raghavan, P.: SETS: Search enhanced by topic segmentation. In:
Proceedings of 26th Annual International ACM SIGIR Conference (SIGIR 2003), Toronto,
Canada, July 28–August 1, 2003, ACM Press (2003) 306–313

5. Broekstra, J., Ehrig, M., Haase, P., van Harmelen, F., Kampman, A., Sabou, M., Siebes, R.,
Staab, S., Stuckenschmidt, H., Tempich, C.: A metadata model for semantics-based peer-to-
peer systems. In: Proceedings of the WWW’03 Workshop on Semantics in Peer-to-Peer and
Grid Computing. Budapest, Hungary, May 20, 2003. (2003)

6. Crespo, A., Garcia-Molina, H.: Semantic overlay networks for P2P systems. Technical
report, Department of Computer Science, Yale University (2002)

7. Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S.,
Xu, Z.: Peer-to-peer computing. Technical Report HPL-2002-57, Hewlett-Packard (2002)

8. Arpinar, I.B., Aleman-Meza, B., Zhang, R., Maduko, A.: Ontology-driven web services
composition platform. In: Proceedings of IEEE International Conference on E-Commerce
Technology, CEC’04, San Diego, California, USA, July 6–9, 2004, IEEE Press (2004)
146–152

9. Benatallah, B., Dumas, M., Sheng, Q.Z., Ngu, A.H.H.: Declarative composition and peer-to-
peer provisioning of dynamic Web services. In: Proceedings of the 18th International IEEE
Conference on Data Engineering, ICDE’02, San Jose, USA, February 2002. (2002) 297–308

10. Ermolayev, V., Keberle, N., Kononenko, O., Plaksin, S., Terziyan, V.: Towards a framework
for agent-enabled Semantic Web service composition. International Journal of Web Services
Research 1 (2004) 63–87

11. Küngas, P., Rao, J., Matskin, M.: Symbolic agent negotiation for semantic web service
exploitation. In: Proceedings of the Fifth International Conference on Web-Age Information
Management, WAIM’2004, Dalian, China, July 15-17, 2004. Volume 3129 of Lecture Notes
in Computer Science., Springer-Verlag (2004) 458–467

12. Paolucci, M., Sycara, K., Nishimura, T., Srinivasan, N.: Using DAML-S for P2P discovery.
In: Proceedings of the First International Conference on Web Services, ICWS’03, Las Vegas,
Nevada, USA, June 23–26, 2003, CSREA Press (2003) 203–207

Semantic Web Service Composition Through a P2P-Based Multi-agent Environment 119

13. Rao, J., Küngas, P., Matskin, M.: Logic-based Web services composition: From service
description to process model. In: Proceedings of the Second International Conference on
Web Services (ICWS 2004), San Diego, California, USA, July 6–9, 2004. (2004) 446–453

14. Girard, J.Y.: Linear logic. Theoretical Computer Science 50 (1987) 1–102
15. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-

to-peer lookup service for internet applications. In: Proceedings of ACM SIGCOMM 2001,
San Diego, California, USA, August 27–31, 2001, ACM Press (2001) 149–160

16. Raghavan, P.: Information retrieval algorithms: A survey. In: Proceedings of the Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, United
States, January 5–7, 1997, SIAM (1997) 11–18

17. Schmidt, C., Parashar, M.: A peer-to-peer approach to Web service discovery. World Wide
Web Journal 7 (2004) 211–229

18. Lämmermann, S.: Runtime Service Composition via Logic-Based Program Synthesis. PhD
thesis, Department of Microelectronics and Information Technology, Royal Institute of Tech-
nology, Stockholm (2002)

19. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.: METEORS
WSDI: A scalable P2P infrastructure of registries for semantic publication and discovery of
Web services. Journal of Information Technology and Management (2004) To appear.

20. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Importing the Semantic Web in UDDI.
In: Proceedings of the CAiSE 2002 International Workshop on Web Services, E-Business,
and the Semantic Web, WES 2002, Toronto, Canada, May 27-28, 2002, Revised Papers.
Volume 2512 of Lecture Notes in Computer Science. Springer-Verlag (2002) 225–236

21. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval using self-organizing
semantic overlay networks. In: Proceedings of ACM SIGCOMM’03, Karlsruhe, Germany,
August 25–29, 2003, ACM Press (2003) 175–186

A Low-Latency Peer-to-Peer Approach for
Massively Multiplayer Games

Jin Zhou1, Li Tang1, Kai Li1, Hao Wang1, and Zhizhi Zhou2

1 University of Tsinghua, Beijing, China
{zhoujin00, tangli03, li-k02, wanghao02}@mails.tsinghua.edu.cn

2 Renmin University of China, Beijing, China
zhouzz@ruc.edu.cn

Abstract. This paper focuses on the latency reduction problem in mas-
sively multiplayer games (MMGs). As the client-server (CS) architecture
in use today in most commercial MMGs applications are exposing its
weakness in scalability as the number of players increases, researchers
start to consider the peer-to-peer (P2P) model that has inherent high
scalability for MMGs. However, existing P2P models generally lead to
high latency that significantly detracts from the playing experience. To
improve this, we present a novel communication model intended to re-
duce the latency of network communication on game states. The model,
based on DHT protocol, can select the best candidate node to perform
server’s role for a game zone. In contrast, existing P2P models designate
’peer servers’ randomly without considering latency effects. The simula-
tion shows that our approach obtains much lower latency than existing
P2P models. The performance of our approach is shown to be even bet-
ter than that of CS models.

Keywords: MMGs, P2P, Low latency, DHT, Smart manager.

1 Introduction

Developing massively multiplayer games (MMGs) is much harder than tradi-
tional PC games because of the requirement of network programming and certain
cross-session infrastructures for managing and maintaining the game communi-
ties. Besides, to avoid losses caused by service- stoppage, service providers have
to add and update many servers to cope with increasing players. As a result,
only few companies can afford the cost of establishing, maintaining and updating
a large number of servers and telecom service. The peer-to-peer (P2P) approach
has been considered to be a possible solution to reduce such costs by using the
spare resources (i.e. CPU, memory, bandwidth) on clients.

The latency in network communication seriously hampers the P2P approach’s
ability to achieve high scalability for MMGs: There is usually a high frequency
of communications in MMGs. This paper presents a novel P2P approach which
is capable for communicating with low latency; the latency is shown to be lower
than that of the client-server model. The approach has the potential of reaching
optimal latency by selecting peer servers for game zones.

Z. Despotovic, S. Joseph, and C. Sartori (Eds.): AP2PC 2005, LNAI 4118, pp. 120–131, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Low-Latency Peer-to-Peer Approach for MMGs 121

2 Related Work

Existing communication architectures for MMGs can be conceptually summa-
rized into the following four categories:

2.1 Client-Server Model

In client-server model, each client sends game events to a central server, and
then the server sends updated game states to the related clients. The server’s
capacity needs to correspond to the player numbers; insufficient server capacity
detracts from the game experience while too many servers waste resources. In
addition, the fixed location and limited bandwidth of the servers also increase
communication latency.

2.2 Fully-Connected Model

In a fully-connected model [1], every node stores a global latest game state. Any
event caused by a node is broadcasted to all others. Supposing the number of
players is N, the number of total messages needed for each event is O(N2). So
this model may not scale well when N becomes large.

2.3 Hybrid Model

In MMGs, each node needs to obtain only the necessary game states relating to
itself rather than the overall states. Therefore the game world may be divided
into several autonomous zones according to the game rules. In hybrid model [1],
players are grouped according to the zones. Group members communicate with
each other the same way described above in the fully-connected model, while
the communication between different zones is realized by means of multicast.
This model improves scalability to some extent, but how to optimize the group-
ing algorithm still remains a difficult problem. However, over-grouping leads to
much inter-zone communication while under-grouping results in heavy intra-zone
communication.

2.4 DHT-Based Peer-to-Peer Model

Current P2P models used in MMGs [2], which obtains routing efficiency by
means of distributed hash tables (DHT), convert the data search into a key
lookup problem. They designate the management privilege of the zone data to a
randomly selected node, called coordinator, to take charge of recording TCP/IP
addresses of the zone members, storing or modifying the game states in the zone,
receiving queries and broadcasting updated states. We name such an approach
the random manager (RM) model. The coordinator in RM has to organize the
zone members and manage zone data simultaneously. Since the selection of the
coordinator has no consideration of communication latency, the latency between
the coordinator and the zone members may be very high.

122 J. Zhou et al.

At the present, the CS model is the most popular, while the structured DHT
model of P2P has the highest potential of further development due to its scal-
ability and availability. We propose a novel DHT-based P2P model using the
’Smart Manager’ to achieve low latency that can be shown to be consistently
better than that of the CS model.

II

IIV

III

Coordinator of Zone I
Manager of Zone I

Manager Space

Coordinator Space

Manager of Zone I

Coordinator of Zone I

Members of Zone I

Member Adr.

Game Status

Member Adr.

Game Status

Manager Adr.

00110100

01111001

10100100

10110010

01010011

01101101

11100001

00101001

Game World Space

00101001

00110100

01010011

01101101

01111001

10100100

10110010

11100001

00101001

00110100

01010011

01101101

01111001

10100100

10110010

11100001

Backup/Upload

Read/Write

Subscribe/Publish

Fig. 1. Role spaces of smart manager model

3 Smart Manager

3.1 Main Idea

The essential difficulty in optimizing the selection of the coordinator in RM
comes from its random identification mechanism that ignores and conceals the
actual topology of the physical networks. The nodes are never able to discover
the network distance between each other unless using probe message that may
require significant extra bandwidth.

We propose a novel model, Smart Manger (SM), to solve the latency problem
of the RM model (Fig.1). Compared with having only one coordinator to take
charge of managing the zone work in RM model, two roles in the SM model,
named as manager and coordinator respectively, cooperate to carry out such
mission. The coordinator is responsible for organizing zone members, while the
manager holds the zone data and only itself has the modification privilege. To
read or modify the zone data, members in a certain zone must request the

A Low-Latency Peer-to-Peer Approach for MMGs 123

manager to carry out the actions for them. Such mechanisms guarantee the
consistency of global game states and correct order of communication messages.
The procedures of selecting manager and coordinator of a zone are independent
with each other. Similar to the RM model, the coordinator in the SM model is
also designated randomly. However, the manager is selected by the coordinator
of the same zone, with the principle that the maximal latency between the zone
manager and other zone members should be minimal. As the instance shown
in Fig.1, members of zone I in game world space, say 00110100, 01111001 and
10100100, find out the zone coordinator using DHT protocol in coordinator
space first, say 01010011, to get the address of the zone manager, say 10110010
in manager space; and then communicate with the manager directly for sending
requests and receiving updates.

3.2 Location-Based Node Identifier Assignment

To select the manager with the consideration of reducing latency, the SM model
needs to transform the identifier (ID) of each node to its network location and
vice versa. Our previous work LENS (Locality-Embedded Naming Strategy) [3],
in which the ID of a node reflects its network location, is a solution for this
requirement.

The LENS embeds the locality information into the node ID to keep the
neighborhood of locality in the ID space. That is, if two nodes are near in
the network, their IDs are adjacent as well. LENS is lightweight and does not
require the nodes to store the global location information all the time. Instead,
it computes it at runtime immediately.

LENS benefits from an ability of Global Network Positioning (GNP) [4] to
predict round-tip times to other host nodes without having to contact them
first. GNP assigns synthetic coordinates in D-dimension hypercube to nodes such
that the distance between the coordinates of two nodes accurately predicts the
communication latency between the nodes. To compute the coordinate, each
node is required to offer its network distance to some landmark nodes by sending
ping/pong messages.

Each dimension of the hypercube is divided into 2k equal parts, and the
hypercube will be totally divided into 2kD parts, named as grid. Then we traverse
all the grids with Hilbert curve with Moore version which is one kind of Discrete
Space Filling Curve (DSFC) [5].

An important characteristic of DSFC is to maintain the relative locations
of the points, that is, if the points are near multi-dimensional space, they re-
main near in one dimensional space [6]. We identify the passed grids with
0 ∼ 2kD (binary format) in turn along the Hilbert curve. Fig.2 gives an exam-
ple of the identifying procedure of Hilbert curve in two-dimensional hypercube,
where k = 2.

Each node takes the ID of the grid where it is located as the prefix of the
node ID and takes a random value as the suffix which is generated with a hash
function to assure the uniqueness of the node ID.

124 J. Zhou et al.

0000 0001

00100011

0100 0101

011001111000

1011

1100

11111110

1101

1010

1001

0011 0100

prefix
00101001

suffix

01010011

(Coordinator)

01101101

01111001

11100001

10110010
(Manager)

10100100

Hilbert Curve

Start PointEnd Point

Grid ID

Network Geometry Space

Fig. 2. Identifying nodes based on grids of network geometry space

3.3 Model Design

On MMGs, nodes do not have to share all global states. Therefore, we divide
the whole global states into several zones and make each zone governed by some
nodes. The zone’s boundary is defined by the game program.

Along with the concept of zones, we introduce three roles of the node: zone
member, zone coordinator and zone manager. Each node may play one or more
such roles.

Zone Member. Zone member is one of the nodes intending to read or modify
the states of the specific zone. To read or modify the global states of some
zone, the node must become a zone member first, for which it may seek out
the coordinator of the destined zone on the DHT overlay, send it joining-request
message and wait for its authorization.

Zone Coordinator. Zone coordinator is the node in charge of organizing the
zone member nodes. The SM model selects the zone coordinator randomly as
shown in Fig.1. The SM model maps some character of the zone to a key, and
uses DHT to find the nearest node to the key to act as the zone coordinator.
The coordinator node is responsible for recording the TCP/IP addresses of the
members and the manager (described later), selecting the manager node for the
zone, notifying the manager’s address to the members, backing up data and
temporarily playing the role of manager when the manager is vacant.

From the coordinator, zone members get the addresses of the manger in order
to request reading or modifying states; on the other hand, the manger gets the
addresses of the zone members in order to send them updated states.

Zone Manager. The zone manger is the node possessing the management priv-
ilege, such as storing/modifying the global states and sending update message
to the zone members. Any MMG has the potential to define a criterion function
to qualify the manager candidates, for example, requiring enough idle comput-
ing time or good reputation. According to specific criterion function, the most
qualified node would be selected as the manager. Our SM model defines the

A Low-Latency Peer-to-Peer Approach for MMGs 125

criterion function to be the maximal latency between the manager and each of
the zone members, called the zone latency, which should be minimized during
the selection of the manager.

The key process of the SM model is selecting the zone manager by the zone
coordinator. The coordinator will select what minimizes the criterion function
out of the qualified nodes to be the manager. The criterion function of the SM
model, the zone latency, can be depicted as follows:

LNet(z, m) = max
i∈S(z)

{DNet(m, i)} (1)

where m stands for the manager, i stands for certain zone member, S(z) stands
for the member set of zone z, and the dual function DNet stands for the com-
munication latency between two nodes.

The manager is selected with the following steps:

1) The coordinator sends messages to all zone members to obtain their GNP
coordinates.

2) The coordinator optimize the criterion function according to all the received
GNP coordinates to figure out the coordinate m∗ of the ideal manager.

3) The coordinator converts m∗ to its corresponding key with a hash transfor-
mation, searches the key using DHT protocols, and designates the result to
be the zone manager.

As the role in the game may frequently change its location in the game world,
for example from one city to another, the coordinator has to periodically execute
the manager-selection procedures so as to minimize the intra-zone communica-
tion latency.

The manager should download all data of the zone it manages from the co-
ordinator immediately after it assumes the post. Then the manager’s local copy
becomes the standard game state of the zone. The zone members should require
the manager to perform their read or modification demands. When a node enters
a new zone, it will find the zone coordinator with the DHT protocol, request to
join and get the address of the zone manager, and then create and maintain a
direct communication connection to the manager until it quits that zone. The
DHT protocol provides mechanisms for the zone members, the coordinator and
the manager to communicate and find their demanded objects. The manager
periodically backs up the game state data of the zone to the coordinator so
as to avoid data loss. If the current manager drops out, the coordinator would
temporarily take up the role of the manager until a new manager is selected.

It should be noted that in practice there may not be such an appropriate
node whose coordinate is m∗ exactly. Thus, the DHT protocol may need to
approximate m∗ with a candidate node as accurate as possible.

4 Simulation

The simulation measures the latency of the CS, RM and SM models under the
same conditions. Here, the latency is defined as the network communication time
without considering the processing time for computing and displaying.

126 J. Zhou et al.

4.1 Methodology

We assume all nodes have enough band width and computing ability. The zone
managers can use multiple threads to communicate with several zone members
in parallel, and the number of the threads does not affect latency.

Network Topology. We use GT-ITM [7] software to randomly construct an
Internet-like virtual network. The simulation uses the Transit-Stub model be-
cause it most resembles the present Internet structure.

We simulate a network containing 9600 hosts. These hosts act as clients or
servers in CS model, while as P2P nodes in the SM and RM models. Some of the
hosts are randomly selected to construct different scale MMGs networks. The
detailed configuration in the GT-ITM is given in Table1.

Table 1. Parameter Values

Symbol Value Meaning
T 1 Total number of transit domains
NT 4 Average number of transit nodes per transit domain
K 3 Total number of stub domains
NS 8 Average number of stub nodes per stub domain
L 1 Average number of LANs per stub domain
NL 100 Average number of hosts per LAN
NR 100 Total number of routing nodes
NH 9600 Total number of hosts
ETT 100ms Latency between transit nodes
ETS 20ms Latency between stub node and transit node
ESS 5ms Latency between stub nodes
ESL 1ms Latency between stub node and LAN

Node ID. The nodes in the CS or RM model get their IDs by hash functions
in a random way. While the SM model generates the nodes IDs with LENS that
can embed the location information into the node ID.

Zone Arrangement and Node Distribution. The game space can be divided
by grouping the nodes, each group corresponding to a zone. The number of
groups can be calculated from the number of the nodes in the game space and
the average size of the groups. Each node has to choose a group and join it to
become a member of the corresponding zone.

In order to analyze the performance of the SM model deeply, we consider two
different node distributions in the game world.

a) Location-independent distribution
In this case, the nodes randomly choose their own group.

b) Location-dependent distribution
Under this distribution, a node chooses the group based on its network ad-
dress. It is common for the relationship of the players in real world to affect

A Low-Latency Peer-to-Peer Approach for MMGs 127

their relationship in the game world. For example, players in the same net bar
battle together in the same RPG game; students on campus play board&card
in the same competition; and the multiplayer-online-community games bring
more affiliation between the real world and the game world. So, it is sponta-
neous to group the near nodes into the same group in the locality dependent
distribution. As shown later, the SM model has lower latency in both dis-
tributions than the CS and RM model, especially in the locality dependent
distribution.

Assignment of Zone Coordinator and Zone Manager. In the CS model,
the only central server plays double roles as the coordinator and manager for
all zones. In the RM model, the zone coordinator is randomly assigned by the
hash function, meanwhile it also acts as the manager role for the same zone.
Zone coordinator in SM model is also randomly assigned by the hash function,
but the zone manager is selected according to the latency metric mentioned in
previous section.

Simulation Criterion. We define the zone latency as the maximal latency
between the manager and each of the zone members, which is consistent with
the latency criterion function defined in Eq.(1). We use the average zone latency
of all zones to evaluate the CS, RM and SM models.

4.2 Procedure of Simulation Program

A detailed procedure for the simulation program is shown below. The procedure
requires the parameters, such as communication model (CS/RM/SM), total of
nodes and group scale to be preset.

1) Building the topological network with 9600 hosts by GT-ITM.
2) Computing the routing latency among each pair of hosts, with the assumption

that the routing path between any two nodes has the lowest latency.
3) Defining the node number N and the group scale G, then randomly choosing

N nodes from the hosts as system nodes.
4) Identifying the node ID for each specific model independently.
5) Grouping all the nodes in the game space.
6) Selecting the zone coordinator and manager for each model.
7) Computing the zone latency and storing the average latency for all zones.

Each experiment is run ten times with different random seeds, and the mean
values are presented.

4.3 Results

Latency vs. System Scale. Table2 shows the average latency of the three
models against different system scales under location-independent distribution
with group scale being 2.

First, we can see an obvious reduction of the latency in the SM model, whose
latency is respectively 60% and 80% of that of RM and CS model. In practice,

128 J. Zhou et al.

Table 2. Latency for Different System Scales

N 104 201 531 933 1977 4556
CS 140.6538 140.9801 141.7269 143.8853 144.7633 144.7452
RM 193.5385 189.6119 191.1394 196.7621 193.7891 191.6198
SM 116.3077 116.4229 119.2335 118.2401 118.1639 117.7259

the game server in the CS model is often located as near as possible to the
backbone network to reduce the average latency. However, compared to SM, CS
is limited to select only one node to act as the manager for all zones, which
restricts the optimization. Meanwhile, SM is able to select the manager that is
optimal for each specific zone, and the managers of different zones can be either
the same or distinct. From the view point of GNP space, CS selects the exclusive
manager in the whole node set, while SM is able to select respective managers
in the center of each specific zone.

Second, Table2 indicates that increasing the number of nodes has little effect
on the latency in all the three models. When we raise the node number from
104 to 4556, the latency rises only 2.91%, -0.99% and 1.22% respectively in
the CS, RM, and SM model. That is because we assume that the latency is
not affected by the requirement of computing and bandwidth. Actually, the
increase of the node number will add the number of the parallel threads in the
memory which may make the manager process requests of multiple threads in
batch and increase the game latency. Note that game latency is different from
network latency: the increase of game latency comes from the limited computing
capacity that is unable to process the tasks of computing and networking at the
same time. From the perspective of increasing the scalability of the computing
capacity and bandwidth, the SM and RM model belonging to the P2P model
have more potential than the CS model [8]. Detailed discussion of this, however,
is out of the scope of this paper, for we primarily focus on the latency problem.

0 20 40 60 80 100
0

50

100

150

200

250

300

Group scale

L
at

en
cy

Client−Server
Random Manager
Smart Manager

(a) Location-independent distribution

0 20 40 60 80 100
0

50

100

150

200

250

300

Group scale

L
at

en
cy

Client−Server
Random Manager
Smart Manager

(b) Location-dependent distribution

Fig. 3. Latency as a function of group scale

A Low-Latency Peer-to-Peer Approach for MMGs 129

Latency vs. Group Scale. Fig.3 shows the latency of the CS, RM and SM
models with different group scales. In Fig.3, (a) and (b) respectively shows the
results of location-independent distribution and the location-dependent distri-
bution. There are 1008 nodes in Fig.3(a) and 1001 in Fig.3(b).

In Fig.3 we can find that the curves of the CS, RM and SM models have
the same trend whether we use location dependent or independent distribution.
Both the graphs indicate:

a) The average latency of the CS, RM and SM all increase as the increment of
group scale. The rate of increase gradually slows down, and reaches a stable
value when the number of groups becomes large.

b) With different group scales, the relationship of the latency of the three models
is always the same, SM≤CS≤RM.

c) The curves of CS and SM approach approximately the same value as the
group scale increases, and the two curves are always superior to the curve of
RM.

Because the zone latency is the maximal latency between the manager and
the members, adding new members to a zone will either increase or retain the
zone latency. So it is reasonable for the zone latency to increase together with
the group scale in general. When the group scale is small, the distribution of
the members has a large effect on the latency, and each newly joined node will
have significant effect on the distribution. When the groups scale increases, the
distribution of zone members is analogous to the whole system. That is, the
center of a large zone is very near the center of all the nodes in the game world.
In this case, a newly joined node would change the zone latency slightly.

The three models are independent with the group scale. That is why the
comparison result of the latency of the three models remains the same. And we
have analyzed the reasons for the comparison result order in previous paragraphs.
As we have presented above that the center of a large zone is very near to the
center of the whole system, although the SM can select different manager for
each zone, the best one may be the same as the server of CS model. That’s why
the latency curves of the SM and CS model become nearly identical at last.

Comparing Fig.3(a) with Fig.3(b), we can find that the differences mainly
appear where the group scale is small. As the group scale increases, the la-
tency curve of the location dependent distribution gradually rises up, while the
latency curve of the location-independent distribution rises up steeply at the
beginning and slows down afterwards. We can also explain this by compar-
ing the distribution of the zone members and the nodes in the system. With
the location-independent distribution, the zone members distribute randomly
in network geometry space, no large group scale (e.g. 5 in Fig.3(a)) may make
the zone members’ distribution analogous to that of all the nodes of the whole
system; for the other, the zone members are a group of nearby nodes in net-
work geometry space, only large group scale (e.g. 50 in Fig.3(b)) can satisfy the
distribution. Based on the mechanisms of CS, RM and SM, it is easy to find
that the node distribution in the game world only has effects on SM. Because

130 J. Zhou et al.

SM takes advantage of the affiliation between the node distribution and game
grouping, it becomes possible for it to achieve a much lower latency with the
location-dependent distribution.

5 Conclusion

In summary, the SM model has the following features:

a) Scalability and reliability
The SM model implements the P2P overlay with the DHT protocol that
has seen rapidly progress in recent years. It provides high reliability and
scalability.

b) Latency optimization
The SM model assigns the work of organizing the zone members to the zone
coordinators and let the zone manager maintain the zone data. The zone man-
ager is selected by the zone coordinator based on the principle of minimizing
the zone latency.

c) Consistency and time correctness
The SM model uses the interest management approach. Only the manager
possesses the privilege to modify the game ,eq:one states. All the outer re-
quests for reading and modifying game states of the zone are performed by the
manager so as to guarantees the consistency of the game states and correct
order of messages.

These advantages and preliminary simulation results help demonstrate that
the SM model is capable of achieving low latency for MMGs.

In future work, we will implement the SM model on a game platform named
Freegame which is intended to provide a generic network platform using P2P
technologies for board&card games and various desktop games, offering services
of scoring, recording fee and chatting.

Acknowledgement

This work was supported by a research grant from NEC Laboratories China.

References

[1] Fiedler Stefan, Wallner Michael, and Weber Michael. A communication architecture
for massive multiplayer games. In: Proceedings of the first workshop on Network
and system support for games. ACM Press, 2002. 14-22

[2] Knutsson B., Lu H., Xu W. and Hopkins B. Peer-to-Peer Support for Massively
Multiplayer Games. In: IEEE Infocom. 2004.

[3] ZHOU Jin, TANG Li, LI Kai, and ZHOU Zhizhi. Freegame: A Testbed for Peer-to-
peer Techniques in Massive Multiplayer Online Games. ResearchReport-2004-11-1.
2004.

A Low-Latency Peer-to-Peer Approach for MMGs 131

[4] Eugene Ng T. S. and Zhang Hui. Predicting Internet network distance with
coordinates-based approaches. In: IEEE INFOCOM 2002. IEEE Press, 2002.

[5] H. Sagan. Space-filling curves. New York : Springer-Verlag, 1994.
[6] Gotsman C. and Lindenbaum M. On the Metric Properties of Discrete Space-Filling

Curves. In: Proceeding of ICPR9’4. 1994.
[7] Zegura, E., Calvert, K. L., and Bhattacharjee, S. How to model an internetwork. In:

Proceedings of the IEEE Infocom’96. IEEE Computer Society Press, 1996. 594-602
[8] Bauer Daniel, Iliadis Ilias, Rooney Sean and Scotton Paolo. Communication Archi-

tectures for Massive Multi-Player Games. Research Report. IBM Research, Zurich
Research Laboratory, Switzerland. 2003.

An Agent-Based Collaborative Framework for
Mobile P2P Applications

Mengqiu Wang, Heiko Wolf, Martin Purvis, and Maryam Purvis

University of Otago, Dunedin, New Zealand
{mwang, hwolf1, mpurvis, tehrany}@infoscience.otago.ac.nz

Abstract. The design of ad-hoc, wireless, peer-to-peer applications for
small mobile devices raises a number of challenges for the developer,
with object synchronisation, network failure, and device limitations be-
ing the most significant. In this paper, we introduce the FRAGme2004
framework for mobile P2P application development. To address data
availability and stability problems, we have devised an agent-based fos-
tering mechanism to protect applications against data losses in cases of
peers dropping out. In contrast to most current literature, we focus on
small scale P2P applications, especially gaming applications.

1 Introduction

Peer-to-peer computing architectures go beyond currently popular client-server
architectures and stand to become the dominant form of distributed computing
in the coming years. Typical P2P systems are characterized by decentralized con-
trol, scalability and robustness. Despite the popularity of Internet-based large
scale P2P systems, smaller scale P2P applications that run on small, mobile de-
vices are becoming increasingly popular as well [17]. The absence of centralized
control and thus no single failure-point, extreme dynamism in structure, and
full mobility and flexibility are all desired features in many application domains,
which can be achieved via mutual exchange of information and services over ad-
hoc, wireless, P2P networks. But challenging problems arise in the development
of such applications [5], [14], [15]. Firstly, wireless, ad-hoc networks face prob-
lems such as stability, data integrity, routing, notification of joining and leaving
peers, and in case of peer failure, fault tolerance. In such networks, the connec-
tions of the devices may be highly variable, as devices may hop from online to
offline unpredictably, and thus affect reliability. Secondly, since the peers exist
in a collaborative environment without central control, synchronisation of peers
and the distribution of resources become significant issues. Thirdly, for the ap-
plications to run smoothly on the small devices we intend, efficient management
of local computing resources is a necessity.

When developing new applications, these issues happen repeatedly, since there
is no generic infrastructure which addresses all the aforementioned problems.
In this paper we present the “FRAGme2004”1 framework, which is designed
1 FRAGme2004 stands for Framework for Realtime Ad-hoc Games micro edition 2004.

Z. Despotovic, S. Joseph, and C. Sartori (Eds.): AP2PC 2005, LNAI 4118, pp. 132–144, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Agent-Based Collaborative Framework for Mobile P2P Applications 133

for mobile P2P applications, and concentrate particularly on its agent-based
mechanism supporting collaboration among peers, called the “peer fostering”
mechanism.

2 Background

Milojicic et al. [16] provide a good review for P2P systems. An important topic
in this domain is data availability. Cooper et al. [5] argue that “a complete
system must ensure that important data remain preserved even if the creator or
publisher leaves the system” (p.2), and they developed a reliable preservation
service built on a P2P architecture, on top of which digital library applications
could be built. Another strategy, the “dissemination tree”, is used by Chen et
al. [4] to reduce the number of replicas and the bandwidth needed for updates.
Finally, Lin et al. [14] introduce a protocol to handle the loss and rebuilding
of replicas. All those approaches are aimed at applications such as file sharing,
where data loss and node failure can harm the performance, but not the overall
functioning of the system. In contrast with their approaches, our concern is with
small-scale P2P networks where every node failure can be a fatal threat to the
functioning of the system.

There have been several earlier efforts to develop a framework for P2P appli-
cations. Akehurst et al. [1] and Kato et al. [13] have proposed frameworks which
include group management and multicasting support to assist the design of com-
plex applicactions. With respect to the domain of applications, even though most
P2P applications have so far been restricted to file sharing or instant messaging,
Gerke et al. [10] have introduced a framework that supports P2P services of
any kind. In contrast with all these frameworks, FRAGme2004 aims at highly
interactive small-scale P2P applications, such as gaming over wireless ad-hoc
networks. In this domain of small scale and volatile wireless systems, there are
challenges that have not been covered by previous research.

The use of agent technologies in P2P systems has been investigated by sev-
eral researchers. Dasgupta [6], [7] proposed a P2P architecture in which mobile
agents are used as peer mediators, replacing traditional message-based proto-
cols to achieve higher efficiency, robustness, and scalability. Babaoglu et al.
[2] designed and implemented the Anthill framework, which supports the de-
sign, implementation and evaluation of P2P applications based on agent con-
cepts. In the P2P architecture proposed by Homayounfar et al. [11], peers are
modelled as agents with some intelligence (e.g., calculating the success prob-
ability of data search in order to improve search efficiency) to enhance the
capability and autonomy of peers. The agent-based fostering mechanism in
FRAGme2004 has some similarities with the concepts in Homayounfar et al.’s
work. Peers in a FRAGme2004 application are equipped with on-host service
agents which are autonomous and have the intelligence to organize and re-
construct the collaboration relationship among peers. These collaboration re-
lationships are crucial for data availability purposes, and will be discussed in
Section 4.

134 M. Wang et al.

3 The FRAGme2004 System

The FRAGme2004 framework is written in Java and represents a redesign and
extension of earlier work by Nagel [18]. The framework has a three-layer archi-
tecture, in which layers communicate with each other through well-defined inter-
faces. The bottom layer is the Infrastructure Layer, which consists of the basic
building blocks that address the communication requirements. A layer above the
Infrastructure Layer is the Object Layer. An “object” is the smallest entity that
is distributed among the peers. The information and data that must be shared
in the applications is encapsulated into objects, and the agents associated with
each peer take care of the delivery, synchronization and life-cycle management
of objects. The top layer is the Application Layer.

The FRAGme2004 framework frees application developers from networking
and resource management. This includes the establishment of the underlying
network infrastructure, notification of joining and leaving peers, communication
and object exchange. As a consequence, application developers can focus their
attentions on the higher-level operation of the applications. To make applications
run reliably at all times, the agents that take care of object synchronization
and distribution also use a novel fostering mechanism that makes use of data
redundancy to achieve overall integrity and robustness even in cases of node
failure.

3.1 Infrastructure Layer

Currently, the communication layer of FRAGme2004 is based on the middleware
architecture JGroups [12], which is used in a number of P2P projects to provide
reliable multicasting. JGroups was chosen as a foundational infrastructure, be-
cause it provides reliable and standardized unicasting and multicasting, which
frees us from having to reimplement those low level details. Although all P2P
applications require efficient communication, it is especially true with complex
applications such as games, which is a special concern for FRAGme2004. Uni-
casting (point to point communication), although used in many situations such
as file sharing applications, does not suffice here. In circumstances where peers
in a group share the same resource or need to be notified at the same time for
synchronization purposes, multicasting is needed.

Two communication approaches for FRAGme2004 were originally tested, one
based on simple Remote Method Invocation (RMI) unicasting and one based
on multicasting, to determine the more efficient communication mechanism. We
observed that multicasting is more efficient than RMI calls in group communica-
tions, a difference that is magnified with an increasing number of peers. Although
RMI and JGroups are not totally comparable due to their different marshalling
mechanisms, the performance differences can be partially attributed to the fact
that in the case of RMI, a sender has to contact every other peer, one by one, in
order to share information with his group; whereas in multicasting it only needs
to send one message.

An Agent-Based Collaborative Framework for Mobile P2P Applications 135

A further reason for using JGroups in our architecture is that it provides
needed group management functions, for example, the creation and deletion
of groups, the notification of change of membership (joined/left/crashed peers),
etc. The value gained from group management support is significant: while group
management appears to be simple, it conceals a number of low level details, such
as the establishment of the network structure and communication channels and
the identification for groups.

Another feature of JGroups is that it provides support, albeit limited, for
guaranteed delivery. In wireless communication, virtually no routing protocols
can provide one hundred percent guarantee of delivery success. But with some
failure detection and retransmission mechanisms that are included in JGroups,
we can be reasonably confident concerning the success of message delivery. Such
a near guarantee is important in terms of object-level protocol design. It has
allowed us to implement high level protocols (for example the interaction proto-
cols used by agents in the Object Layer) with less overhead and therefore higher
efficiency. One of the tradeoffs associated with such a “guarantee” of delivery is
that the scalability of the P2P system is restricted. In order to maintain reason-
able efficiency under this guaranteed delivery policy, the network is constrained
to be tightly-coupled. But within the target application domain of FRAGme2004
(small-scale gaming applications), such a tradeoff is acceptable.

3.2 Object Layer

The Object Layer comprises functionalities for object sharing, exchange and
synchronization of change. In case of peer failure, protection mechanisms are
put in place to avoid data loss and the malfunctioning of other peers. To achieve
this, several on-host service agents are created for each peer. Currently there are
three kinds of agents that provide simple services in the framework: the object
managing agent, the synchronizing agent and the fostering agent.

The object managing agent is in charge of the life-cycle management of any
shared objects. When a new object(resource) is requested from the application
layer, the object managing agent will locate the appropriate factory for creating
instances of this object. It will gather all the required information for creating
such an object, issue commands to the factory for creating the object, and return
the object to the application layer. The object managing agent will also notify
the synchronizing agent that a new object has been created, and the synchroniz-
ing agent will distribute the object to other peers. Upon receiving signals from
the application layer indicating that an object is not used anymore, the object
managing agent is responsible for checking the memory status. Depending on the
amount of free memory available, it makes decisions concerning whether to cache
the object for future use (by returning it to the factory) or to garbage collect it.
Once objects are created and handed back to the application layer, changes may
be invoked on these objects, both locally and remotely. In FRAGme2004, objects
are assigned ownership, and, by default, objects are always owned by the peer
that created them. To avoid cases where multiple peers invoke changes to the
same object at the same time, we rely on synchronizing agents to synchronize

136 M. Wang et al.

the change events. The change request is treated as a service request and is
handled by the local synchronizing agent. The agent will first try to identify
the ownership of the objects. If the object is owned locally, then it will simply
invoke the change on the object, and then locate synchronizing agents resid-
ing on other peers and inform them. If the object is not owned by the current
peer, the synchronizing agent will locate the owner of the object and request
an object-changing service on the synchronizing agent of the owning peer. The
synchronizing agents use a specific protocol that has the following packet format:

Performative Sender Agent ID Receiving Agent ID Message Type Content

The fostering agents serve a special purpose, “Peer Fostering”. Due to the
high volatility of wireless ad-hoc networks, special care must be taken to protect
applications from information loss and potential problems associated with it. In
this connection, we have devised a “peer fostering” mechanism to increase the
fault-tolerance of applications in case of peer failure, by introducing a dependence
relationship among peers. When a new peer joins the group, the fostering agents
of all existing peers will negotiate among themselves to elect an agent with the
least amount of fostering workload, to be the fosterer of the new peer. When a
peer leaves the group intentionally or accidentally, the peer fostering mechanism
comes into effect. As every peer’s objects are fostered by another peer’s fostering
agent, they will not be lost. If the dropping-out peer was holding any objects
that are important to other peers (for example, the ball in a sports game) the
fostering agents will negotiate ownership transfer and delegate the ownership of
such objects to a new peer. In the case where the previously dropped out peer
rejoins, fostering agents will negotiate for the ownership to be transferred back
to the rejoining agent. When a new peer joins, the existing fostering agents will
negotiate among themselves to elect the agent with the lightest workload, and
assign the new peer to be the chosen agent’s fosteree. This is described in more
detail in Section 4.

3.3 Application Layer

Because the bottom two layers take care of all communication and resource
management, application programmers can focus on the domain-specific aspects
of the application without worrying about generic problems that come with
P2P networks. A clearly defined API is provided to the programmers at this
layer to interact with the framework. The interaction mainly goes through an
access point, the “Control Center”. Factory design patterns are used to connect
applications to the framework. Programmers are responsible for implementing
appropriate factories for resources (objects) that are to be shared across the
network. More information about the API is available at [9].

4 Agent-Based Peer Fostering

Compared to cable-bound communications, wireless communication poses ad-
ditional challenges, primarily in connection with packet loss. At a low level,

An Agent-Based Collaborative Framework for Mobile P2P Applications 137

JGroups provides reliable uni- and multicasting, but it doesn’t offer protection
from higher-level problems that affect applications. Temporary disconnection
of devices can occur frequently, especially in dynamic real-world environments.
This problem can seriously impact the basic usability of applications. In games,
for instance, it is generally not satisfactory if a player is not able to continue the
game simply because of some temporary connection loss (e.g., he walks into a
lift). The problem becomes more serious when not only that player suffers from
a temporary disconnection, but also other peers are affected. Consequently, it
is important to ensure the integrity of data and continuity of the execution un-
der these uncertain circumstances. Furthermore, it is also desirable to afford the
disconnected peer the capability of rejoining the application without loss of its
previously-held data.

4.1 Introduction to “Peer Fostering” Mechanism

To address these problems, we introduced the “Agent-Based Peer Fostering”
mechanism into FRAGme2004. Inspired by the schemes used in some P2P ap-
plications (Gnutella, Napster), peer fostering is built on the idea that there exists
some degree of data redundancy in all P2P systems. Most of the other systems
don’t have any special scheme that optimizes the degree of redundancy, but
rather rely on the highly redundant data in the system. This works for systems
where peers are heavy-duty computational resource nodes, such as PCs. But
for our applications, all devices are assumed to be limited in terms of available
memory. Therefore, expecting such a high degree of redundency could signifi-
cantly constrain the performance of applications. As the number of peer failure
instances increases, the accretion and management of redundant data could lead
to unacceptable system performance.

In order to enable all peers to make sensible decisions about what to do in case
of other peers’ failures, the peers need to be able to collaborate, and this process
can be modelled effectively using agents. Each fostering agent is autonomously
acting on behalf of its owner peer, and through negotiation and collaboration,
the agents can help balance the workload (the number of fosterees) with other
agents.

4.2 Peer Fostering Relationship

We define the set of existing peers in a system P = {p1, p2, . . . , pn}. ai is the
fostering agent of pi, and A = {a1, a2, . . . , an} is the set of vertices in a graph.
If n > 1, the Peer Fostering State (PFS) is defined as:

Definition 1. the peer fostering state of a system is a simple directed closed
loop Cpfs

Cpfs = {〈ai1 , ai2〉, . . . , 〈ain−1 , ain〉, 〈ain , ai1〉}
where each occurrence of 〈aia , aib

〉 is a directed edge in the loop from vertex aia

to vertex aib
. For any particular Cpfs , the set {ai1 , ai2 , . . . , ain} is a permutation

of the set {a1, a2, . . . , an}.

138 M. Wang et al.

Each edge 〈aia , aib
〉 denotes a “fostering” relationship between the fostering

agent of peer pia and the agent of peer pib
. In such a relationship, we say aia is

“fostering” aib
, with aia being the fosterer and aib

being the fosteree.
When a peer drops out and the objects that it owns are not needed by the

others, these objects still have to be sustained to allow possible rejoining later.
In our system, instead of having these objects taking up memory storage on
every peer, only the fosterer of the dropped out peer needs to store them. The
fosterer -fosteree relationship is illustrated in Figure 1.

Fig. 1. Illustration of Fosterer-Fosteree Relationship

In the “Peer Fostering” scheme, each participating fostering agent not only
knows who its fosteree is, but also knows whom its fosteree is fostering. The
local knowledge of a fostering agent can be expressed as:

Definition 2. the knowledge of peer ai is

K(ai) = 〈F (ai, aj), F (aj , ak), Adopt({ax1 , . . . , axm})〉

where the set {ax1, ax2 , . . . , axm} contains the agents that ai has temporarily
“adopted”, and where F denotes a fostering relationship.

The reason for storing this extra information will be evident when the drop-out
scenario is described in Section 4.3.

Note that such relationships among fostering agents are updated every time a
new peer joins, or an existing peer drops out. In the case of a new peer joining,
the existing fostering agents will negotiate among themselves to determine which

An Agent-Based Collaborative Framework for Mobile P2P Applications 139

agent is to foster the new agent. The fostering agents follow a set of interaction
protocols that allow the agents to make conversations to build the relationships.
These conversations are initiated by the “active” agent — the fosterers. Although
the reader will notice that every single fostering agent is a fosterer in some
relationship, the agents don’t have such global knowledge, and such knowledge
is not required. Each agent only makes sure that the relationship in which it is
the “active” party is properly pursued. It can be seen that when all agents finish
building their own relationships, each agent will be fostered by some other agent.
In order to correctly build the fostering relationships, we make the assumption
that new peers join the network one at a time.

Each agent has its own thread of execution to secure its autonomy, thus
the acquision of information and negotiation among agents happens behind the
scene of the main gaming thread, and thread-safety measures are taken in our
implementation. This relationship-building phase is essential, but it generates a
very small amount of traffic in the network and therefore has negligible impact.

Fig. 2. Peer dropping out and rejoining - initial configuration

4.3 Peer Drop-Out Handling

In this section we describe the procedure that fostering agents take when another
peer drops out, and use Figures 2 - 4 for illustration. In the initial configuration,
the local knowledge of apurple is:

K(apurple) = 〈F (apurple , ablue),
F (ablue , agreen), Adopt(Ø)〉

140 M. Wang et al.

Fig. 3. Peer dropping out and rejoining - Blue drops out

Fig. 4. Peer dropping out and rejoining - Blue rejoins

and the local knowledge of agreen is:

K(agreen) = 〈F (agreen , apurple),
F (apurple , ablue), Adopt(Ø)〉

An Agent-Based Collaborative Framework for Mobile P2P Applications 141

When a peer (pblue) drops out, all other peers will be notified. apurple will no-
tice that ablue matches the fosteree in one of the relationships (F (apurple , ablue))
that it knows it’s engaged in. And because the fosterer in that relationship is
apurple , itself, apurple will first store all ablue ’s objects, updating the adopting set
to be Adopt({ablue}), and then notify other fostering agents that the ownership
of ablue ’s objects has been changed to apurple . Knowing that ablue was foster-
ing agreen , apurple will then take the initiative of reconstructing relationships
by sending agreen a fostering request. Upon receiving such a request, agreen will
send information about its own fosteree, which in this case is apurple . The local
knowledge of apurple will now be updated to be:

K(apurple) = 〈F (apurple , agreen),
F (agreen , apurple), Adopt({ablue})〉

On the other hand, when agreen was notified that ablue dropped out, it will no-
tice that ablue matches the fosteree in one of the relationships (F (apurple , ablue))
that it knows locally. And because apurple is its current fosteree, it foresees that
apurple will be fostering some other peer after the relationship has been recon-
structed, and therefore it sends a request to apurple to get the updated fosteree
of apurple . After apurple sends back the reply, the local knowledge of agreen will
be updated to be:

K(agreen) = 〈F (agreen , apurple),
F (apurple , agreen), Adopt(Ø)〉

When ablue rejoins, all peers will be notified of the joining event, and apurple

will notice that it is adopting ablue ’s previous objects. If ablue requests to have
its previous data back (it has the alternative option to rejoin as a completely
new peer), apurple will send ablue ’s objects back, and transfer the ownership of
these objects back to ablue . This scheme can be scaled up to an arbitrary number
of peers.

5 The Games

As a proof-of-concept, three networked games that run on the PDA Sharp Zaurus
SL-C700 [8], [21] were developed based on FRAGme2004:

– a space shooter game, called “SpaceBattle”,
– a strategic tank game, called “BOOM!”
– and the Bomberman-like arcade game, called “RoboJoust”.

A screenshot of RoboJoust can be seen in Figure 5 [20]. The implementation
demonstrates that memory and communication bandwidth constraints were han-
dled well enough by FRAGme2004 to allow fast action games on a limited
device such as the Sharp Zaurus. Also, minimal knowledge of the framework
was required, which allowed novice developers to focus on the gameplay design.
“BOOM!” and “RoboJoust” were developed from scratch by a group of eight
senior undergraduate students as a course project.

142 M. Wang et al.

Fig. 5. Screenshot of RoboJoust

6 Evaluation of Agent-Based Fostering Mechanism

Based on the three games, we performed two experiments for the purpose of
evaluating the fostering mechanism. Both experiments were performed on both
PCs with LAN connections and Sharp Zaurus PDAs with WiFi connections.
The first experiment had a game with five players. During play, we let randomly
chosen players drop out, one after another until there was only one player left. We
observed that each time after a player droped out, the remaining player could
continue without any problem or noticeable lag. All the game-critical objects
were kept intact by the framework, without the application programmer having
to write any additional code. Then we let the formerly dropped-out players rejoin
the game. Again, we observed that players could rejoin without experiencing
problems, and each time a player rejoined, the gameplay flow was not affected.
The second experiment took the first experiment one step further. Before each
peer that dropped out rejoins, we select an additional randomly chosen peer to
drop out, and let them all rejoin afterwards. Again, there was no negative impact
on the performance of the game. In both experiments, the workload (number of
fosterees) of fostering agents were balanced over time. Although these operations
are qualitative, they do give suggestive evidence that the fostering mechanism
works in the case of one peer dropping out at a time. Our implementation will
not be so effective if two peers drop out at the same time, because the fostering
pair will not maintain a complete closed loop. The two peers at the ends of
the path are not protected by the fostering mechanism, but fostering will still
function for the peers on the rest of the path.

An Agent-Based Collaborative Framework for Mobile P2P Applications 143

7 Conclusion

The development of mobile P2P applications must overcome a number of obsta-
cles, with object synchronisation, network failure and device limitations being
the most significant. With FRAGme2004, we have developed a system that tack-
les those problems using agent technologies and offers a more reliable framework
for P2P application development. By separating the application layer strictly
from the framework infrastructure, FRAGme2004 allows developers to imple-
ment applications with minimal knowledge of the framework and to concentrate
on the application functionality. The negative impact of network failure and peer
dropout is reduced by our agent-based peer fostering mechanism.

For future development, the range of FRAGme2004 enabled devices can be
further expanded. The development took place on the Sharp Zaurus SL-C700,
which runs Java Personal Profile. It would be desirable to extend the implemen-
tation platform domain to include smaller devices running Java Mobile Infor-
mation Device Profile (MIDP). The agent-based fostering mechanism can also
be enhanced to handle cases in which two peers drop out at the same time. The
agents can be further enhanced to incorporate more capabilities, such as taking
security and trust measures when communicating with other agents.

References

1. Akehurst, D.H., Waters, A.G., and Derrick, J. (2004). “A Viewpoints Approach to
Designing Group Based Applications”, In Herwig Unger, editor, Design, Analysis
and Simulation of Distributed Systems 2004, Advanced Simulation Technologies
Conference, pp. 83-93, Arlington, Virginia, April 2004.

2. Babaoglu, O., Meling, H., and Montresor, A. (2002). “Anthill: A Framework for
the Development of Agent-Based Peer-to-Peer Systems”, Proceedings of the 22nd
International Conference on Distributed Computing Systems(ICDCS), pp. 15-22,
Vienna, Austria, 2002.

3. Bruegge, B., and Dutoit, A.H. (2004). Object-oriented Software Engineering: Using
UML, Patterns, and Java. Upper Saddle River, NJ, USA: Prentice Hall.

4. Chen, Y., Katz, R. H., and Kubiatowicz, J. (2002). “Dynamic Replica Placement
for Scalable Content Delivery”, IPTPS ’01: Revised Papers from the First Inter-
national Workshop on Peer-to-Peer Systems, Springer-Verlag, pp. 306-318, March
2002.

5. Cooper, B., Bawa, M., Daswani, N., Marti, S., and Garcia-Molina, H. (2003). “Au-
thenticity and Availability in PIPE Networks”, Future Generation of Computer
Systems.

6. Dasgupta, P. (2003). “A Peer-to-Peer System Architecture for Multi-agent Col-
laboration”, Advances in Soft Computing, (Proceedings of the 3rd International
Conference on Intelligent Systems and Design Automation, Tulsa, OK), Springer-
Verlag, pp. 483-492, August 2003.

7. Dasgupta, P. (2003). “Improving Peer-to-Peer Resource Discovery Using Mobile
Agent Based Referrals”, Proceedings of the 2nd Workshop on Agent Enabled P2P
Computing (co-located with AAMAS), pp. 41-54, Melbourne, Australia, July 2003.

8. Device preview: Sharp Zaurus SL-C700 VGA resolution PDA,
http://linuxdevices.com/articles/AT5295837592.html

144 M. Wang et al.

9. FRAGme2004 System Documentation,
http://secml.otago.ac.nz/Documents/FRAGme documentation 2004.pdf

10. Gerke, J., Hausheer, D., Mischke, J., and Stiller, B. (2003). “An Architecture for
a Service Oriented Peer-to-Peer System (SOPPS)”, Praxis der Informationsverar-
beitung und Kommunikation (PIK), 2/03, pp. 90-95, April 2003.

11. Homayounfar, H., Wang, F., and Areibi, S. (2002). “Advanced P2P Architecture
Using Autonomous Agents”, CAINE, San Diego California, pp. 115-118, November
2002.

12. JGroups Project, http://www.jgroups.org
13. Kato, T., Ishikawa, N., Sumino, H., Hjelm, J., Yu, Y., and Murakami,. S. (2003)

“A Platform and Applications for Mobile Peer-to-Peer Communications”,
http://www.research.att.com/ rjana/Takeshi Kato.pdf.

14. Lin, S.-D., Lian, Q., Chen, M., and Zhang, Z. (2004). “A Practical Distributed
Mutual Exclusion Protocol in Dynamic Peer-to-Peer Systems”, IPTPS04, Springer-
Verlag.

15. Margaritis, M., Fidas, C., Avouris, N., and Komis, V. (2003). “A Peer-To-Peer
Architecture for Synchronous Collaboration over Low-Bandwidth Networks”, in
K. Margaritis, I. Pitas (ed.) Proc 9th PCI 2003, Thessaloniki.

16. Milojicic, D. S., Kalogeraki V., and Lukose R. (2002). “Peer-to-peer computing”,
Technical Report HPL-2002-57, HP Lab, 2002.

17. Moore, D., and Hebeler, J. (2002). Peer-to-Peer: Building Secure, Scalable and
Manageable Networks. Berkeley, CA, USA: McGrawHill/Osborne.

18. Nagel, M. (2003). “FRAG: A Java Framework for Peer-to-Peer Games”, Diploma
Thesis, Technische Universität München, Feburary 14, 2003.

19. Pang, X., Catania, B. and Tan K. (2003). “Securing Your Data in Agent-Based
P2P Systems”, Eighth International Conference on Database Systems for Advanced
Applications (DASFAA ’03), Kyoto, Japan, p.55, March 26 - 28, 2003.

20. Wolf, H., and Wang, M. (2004). “Robo Joust Game Documentation”,
http://secml.otago.ac.nz/agents/Assets/documents/robojoust.pdf

21. Freedman, A. (2003). “Zaurus SL-C700 Unofficial FAQ”,
http://avi.freedman.net/zaurus/slc700.html

ACP2P: Agent-Community-Based Peer-to-Peer
Information Retrieval – An Evaluation

Tsunenori Mine1, Akihiro Kogo2, and Makoto Amamiya1

Department of Intelligent Systems, {Faculty1, Graduate School2} of Information
Science and Electrical Engineering, Kyushu University
6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
{mine, kogo, amamiya}@al.is.kyushu-u.ac.jp

http://www-al.is.kyushu-u.ac.jp/~mine/mine-e.html

Abstract. The Agent-Community-based Peer-to-Peer Information Re-
trieval (ACP2P) method[1],[2] uses agent communities to manage and
look up information of interest to users. An agent works as a delegate of
its user and searches for information that the user wants by communicat-
ing with other agents. The communication between agents is carried out
in a peer-to-peer computing architecture. Retrieving information relevant
to a user query is performed with content files which consist of original
and retrieved documents, and two histories: a query/retrieved document
history and a query/sender agent history. The ACP2P is implemented
using the Multi-Agent Kodama framework.

In this paper, we present some mathematical aspects of the ACP2P
method with respect to the relationships between communication loads
and the number of records that are stored both in the two histories and
retrieved document content files, and discuss the experimental results,
for which illustrate the validity of this approach. The results confirm the
mathematical conjectures we presented and show that the two histories
are more useful for reducing the communication load than a naive method
employing ’multicast’ techniques, and lead to a higher retrieval accuracy
than the naive method.

1 Introduction

Although the rapid growth of the World Wide Web and the spread of the Inter-
net have helped Internet users to access useful resources or services, users often
find it difficult to search for the information they need because of the flood of
information that needs to be filtered out, and lack of a clear idea of the targets
they want. In order to deal with these problems, a lot of studies on information
filtering (e.g. [3]), information recommendation (e.g. [4]), expert finding (e.g.
[5]), and collaborative filtering (e.g. [6]) have been carried out. Most systems
developed in that research are, unfortunately, based on the server-client compu-
tational model and are often distressed by the fundamental bottle-neck coming
from their central control system architecture. Although some systems based on
peer-to-peer (P2P for short) computing architectures have been developed and

Z. Despotovic, S. Joseph, and C. Sartori (Eds.): AP2PC 2005, LNAI 4118, pp. 145–158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

146 T. Mine, A. Kogo, and M. Amamiya

implemented (e.g. [7], [8], [9], [10]) , each node of most of those systems only
deals with simple and monolithic processing chores.

Considering these issues, we proposed an Agent Community based Peer-to-
Peer information retrieval method called ACP2P method, which uses agent com-
munities to manage and look up information related to a user query.[1],[2] The
agent communities can reflect the structures of human groups or societies such
as laboratories, departments, institutions, research groups and so force, where
the people with the same or similar interests, objectives or aims stay together,
and often browse or look for similar information from the Web. In the ACP2P
method, considering such environments, an agent works as a delegate of its user
and searches for information that the user wants by communicating with other
agents. The communication between agents is carried out based on a P2P com-
puting architecture. In order to retrieve information relevant to a user query,
an agent uses two histories: a query/retrieved document history (Q/RDH for
short) and a query/sender agent history (Q/SAH for short). The former is a list
of pairs of a query and retrieved document information, where the queries were
sent by the agent itself and the document information includes the addresses of
both agents that returned the document and those that created or owned the
document. The latter is a list of pairs of a query and a sender agent’s address
and shows “who sent what query to the agent.” This is useful for finding new in-
formation sources. Making use of the Q/SAH is expected to have a collaborative
filtering effect, which gradually creates virtual agent communities, where agents
with the same interests stay together. We have demonstrated through several
experiments that the method reduced communication loads much more than
other methods which do not employ Q/SAH to look up a target agent, and was
useful for creating a “give and take” effect, i.e., as an agent receives more queries,
it acquires more links to new knowledge[11], but have not so far discussed any
mathematical aspects of the method or the retrieval accuracy of the method.

In this paper, we present some mathematical aspects of the ACP2P method
with respect to the relationships between communication loads and the number
of records that are stored both in the two histories and retrieved document con-
tent files, and discuss the experimental results to illustrate the validity of this
approach. The results confirm our mathematical conjectures about the ACP2P
method and show that the two histories are more useful for reducing commu-
nication loads than a naive method employing ’multicast’ techniques, and lead
to a higher retrieval accuracy than the naive method. The remainder of the pa-
per is structured as follows. Section 2 considers the ACP2P method. Section 3
discusses the experimental results and Section 4 describes related work.

2 ACP2P Method

2.1 Overview of the ACP2P Method Implemented with
Multi-agent Kodama

The ACP2P method employs three types of agents: user interface (UI) agent,
information retrieval (IR) agent and history management (HM) agent. A set of

ACP2P: Agent-Community-Based Peer-to-Peer Information Retrieval 147

three agents (UI agent, IR agent, HM agent) is assigned to each user. Although a
UI agent and an HM agent communicate only with the IR agent of their user, an
IR agent communicates with other users’ IR agents not only in the community it
belongs to, but also in other communities, to search for information relevant to
its user’s query. A pair of Q/RDH and Q/SAH histories and retrieved document
content files are managed by the HM agent.

UI Agent IR Agent HM Agent

user�s query

query

look up query

list of target agents

of the agents RN ?

YES

query

���

NO

query

target IR agents
on the list

Portal Agent (PA)

All IR agents in a community

query

Direct sending

Multicast

History
Q/RDH
Q/SAH

contentAnswers

YES or No Answers

list of
target agents

���

or Received from PA ?

query

Fig. 1. Actions for Sending a Query

IR Agent HM Agent

(query, Agent s Address)

(query, Agent s Address)

Return Answers

Original
Contents

History
Q/RDH
Q/SAH

content

update Q/SAH
look up query

UI Agent IR Agent HM Agent

Presents
Results

(query, Agent s Address,
Answers)

History
Q/RDH
Q/SAH

content

Answers

update Q/RDH & Content

���

Fig. 2. Actions for Receiving a Query (left) and for Receiving Answers (right)

When receiving a query from a UI agent, an IR agent asks an HM agent to
look up target agents with its history or asks a portal agent to multicast a query
(Fig.1) . When receiving a query from other IR agents, an IR agent looks up
the information relevant to the query from its original document and retrieved
document content files, sends an answer to the query-sender IR agent, and also
sends a pair of the query and the address of the query-sender IR agent to an

148 T. Mine, A. Kogo, and M. Amamiya

HM agent so that it can update Q/SAH (Fig.2 (left)). The returned answer
is either a pair of a ’Yes’ message and retrieved documents or a ’No’ message
indicating that there is no relevant information, although retrieved documents
are not returned when the query comes through a portal agent. When receiving
answers with a ’Yes’ message from other IR agents, the IR agent sends them to
a UI agent, and sends them with a pair of a query and the addresses of answer
sender IR agents to an HM agent (Fig.2 (right)).

The ACP2P method is implemented with Multi-Agent Kodama (Kyushu uni-
versity Open & Distributed Autonomous Multi-Agent) [12]. Kodama comprises
hierarchical structured agent communities based on a portal agent model. A
portal agent is the representative of all member agents in a community and al-
lows the community to be treated as one normal agent outside the community.
A portal agent has its role limited in a community, and the portal agent itself
may be managed by another higher-level portal agent. A portal agent manages
all member agents in its community and can multicast a message to them. Any
member agent in a community can ask the portal agent to multicast its message.
The portal agent has its role limited in a community, and itself may be managed
by another higher-level portal agent.

UI Agent
HM Agent

IR Agent

query multicasting
request query

(multicast)

query

query

Portal
Agent

Portal
Agent

history

Q/RDH
Q/SAH
Retrieved Contents

history

history

OC

Original Contents

OC

OC

Fig. 3. Agents and their Community Structure

Fig.3 shows an example of the agent community structure which the ACP2P
method is based on. A portal agent in the figure manages all member agents’
addresses there, where a member agent of a community designates an IR agent.
When a member agent wants to find any target agents which have information
relevant to a query, the agent looks them up using two histories: Q/RDH and
Q/SAH, and content files. If the target agents are found, a query is sent directly
to them, and their retrieved results are also returned directly to the query-
sender IR agent. If the requested number (NR) of such agents is not found, the

ACP2P: Agent-Community-Based Peer-to-Peer Information Retrieval 149

agent asks the portal agent to send the query to all the other member agents
in the community by multicasting a query. At that time, all the answers will
be returned to the portal agent. If the number of results with a ’Yes’ message
reaches NR, without waiting for the rest of answers from other IR agents, the
portal agent sends them back to the query-sender IR agent. Even if the number
of ’Yes’ messages did not reach NR after all the other IR agents replied, the
portal agent still sends the currently held results to the query-sender IR agent.

2.2 Communication Load and History Size

MultiCast: Without Using Two Hisotries. In the ACP2P method, every
IR agent sends one query in rotation. Since an IR agent initially has no records
in its histories, the IR agent first has to ask a portal agent to multicast the query
to all other IR agents in its community. After receiving the query, the IR agents
return a ’Yes’ or ’No’ message with their address to the portal agent. Then the
portal agent selects the top NR IR agents returning ’Yes’ messages in the order
they are received, makes a list of them and sends the list to the query-sender IR
agent without waiting for the rest of other IR agents’ answers. After receiving
the list, the query-sender IR agent again sends the query to the IR agents on
the list. These processes of exchanging messages are shown as follows:

1. QS-IRA –(1)→ PA –(N − 1)→ All-IRAs
2. QS-IRA ←(1)– PA ←(N − 1)– All-IRAs
3. QS-IRA –(NR)→ T-IRAs
4. QS-IRA ←(NR)– T-IRAs

Where QS-IRA, PA, All-IRA and T-IRA represent a query-sender IR agent, a
portal agent, all other IR agents, and target IR agents, respectively. The number
in the parentheses on the arrow represents the number of messages received by
the agent (or agents) pointed by the arrow. N is the number of IR agents in a
community. During the period when every IR agent sends one query in rotation,
the total number of messages exchanged among all IR agents and a portal agent
is at most 2(N + NR)N , the number of messages received by a portal agent
is at most N2 and the average number of messages received by an IR agent is
2NR + N . Therefore, when the multicast technique is employed, the number of
messages received by each IR agent in one routine is proportional to N because
N >> NR.

Using Two Histories. As more queries are sent, more records will be accumu-
lated in the two histories of an IR agent. Let NRD be the maximum number of
documents returned by target IR agents that received a query. At that time, the
maximum number of documents to be stored in a content file holding retrieved
documents (# in content for short) will be NR×NRD, and the maximum number
of pairs in Q/RDH of a query and the address of an IR agent that replied to the
query (# in Q/RDH for short) will be NR. Since the number of these records to
be stored in a content file or Q/RDH is proportional to the number of queries

150 T. Mine, A. Kogo, and M. Amamiya

to be sent by an IR agent, after the IR agent sends NQ queries, # in content and
in Q/RDH will be NQ ×NR ×NRD and NQ ×NR, respectively. An IR agent
receives at most (N − 1) × NQ queries when an IR agent happens to receive a
query from all the other IR agents. Then, the Q/SAH will hold (N − 1) × NQ

records, which are pairs of a query and a query-sender IR agent’s address. On
the average, Q/SAH will hold NQ records.

When an IR agent sends a query, it searches for NR target IR agents from
both its retrieved document content file and the two histories. When NR target
candidate IR agents or more were found, the query-sender IR agent ranks the IR
agents based on the similarity of the query and selects the top NR IR agents from
among them. The similarity measure will be described in Sec. 3.3. Otherwise,
the query-sender IR agent has to ask a portal agent to multicast the query to all
the other IR agents so that the IR agent can fulfill its quota of target IR agents.
For every query sending of each IR agent, 2NR messages will be exchanged in
the former case, and 2NR +2N messages in the latter case, as mentioned earlier.
As more queries are sent by IR agents, the number of occurrences of the latter
case, i.e. multicasting, will be reduced according to the increase in records in
their content files and histories.

3 Experiments

3.1 Preliminaries

We used the Web pages of Yahoo! JAPAN [13] for the experiments as Mine et al.
[11] did. The Web pages used are broadly divided into five categories: animals,
sports, computers, medicine, and finance. Each of them consists of 20 smaller
categories, which are selected in descending order of the number of Web pages
recorded in a category. An IR agent is assigned to each selected category, and
thus 100 IR agents are created and activated in the experiments. A category
name is used as the name of an IR agent, and the Web pages in the category
are used as the original documents of the agent. All 100 IR agents are assigned
to a single community for simplicity.

We conducted experiments to show how the two histories help to reduce com-
munication loads between agents looking for information relevant to a query and
how Q/SAH (a query/sender agent history) helps in searching for new informa-
tion sources, having a comparable or higher accuracy in retrieving documents
han a method without two histories. To perform the experiments, we compared
three methods : (1) ACP2P with a Q/SAH (wQ/SAH for short), (2) ACP2P
without a Q/SAH (woQ/SAH for short), and (3) a simple method always em-
ploying a ’multicast’ technique (MulCst for short).

In the experiments, two query sets : QL=1 and QL=2, were used. QL=1 and
QL=2 consist of 10 queries, whose query length is one and two, respectively,
where query length means the number of terms in a query. When using queries
belonging to QL=1, 10 nouns are extracted from every category assigned to each
IR agent in descending order of their frequency of occurrence in the category.
Each noun is used as a query of the IR agent. When using those belonging to

ACP2P: Agent-Community-Based Peer-to-Peer Information Retrieval 151

Fig. 4. The relationship between the number of QL=1 queries used by agents and the
number of those agents. Both axes are in log scale.

QL=2, 5 nouns are extracted and the combinations of the extracted 5 nouns
taken in pairs create 10 queries.

The relationship between the number of QL=1 queries used by agents and
the number of such agents is shown in Fig.4, where both axes are in log scale.
The relationship almost seems to obey a power law distribution.

3.2 Relevance Judgement and Evaluation

In a P2P network environment, gathering all documents from every peer is not
always possible, that is, indexing all documents is quite difficult. Thus the first
goal for IR in the P2P network environment is to achieve a result compara-
ble with a Conventional probabilistic IR method using a centralized indexing
database (CIR method for short). As the CIR method, we employed a Prob-
abilistic IR method that applies a simplified BM25 [14] weighting function to
all the documents collected from every peer. The simplified BM25 is defined as
follows: ∑

T∈Q

log
n + 0.5

N − n + 0.5
2tf

dl
avdl + tf

(1)

Where Q is a query that contains terms T . tf is the frequency of occurrence of the
term within a specific document. N and n are the number of items (documents)
in the collection1 and the number of documents containing the term, respectively.
dl and avdl are respectively the document length and average document length,
where the document length is the number of terms in a document, and a term
is a word detected by a morphological analyzer.

In order to compare the ACP2P method with the CIR method, we used the
following equation:
1 In the experiment, the documents in the collection are those collected from all peers.

152 T. Mine, A. Kogo, and M. Amamiya

NR∑
i=1

1
r(i)

/

NR∑
i=1

1
i

Where r(i) is the CIR method’s rank of the document that is ranked by the
ACP2P as the ith document. For example, if a document is ranked by the ACP2P
as the 2nd document and the document’s rank by the CIR method is 3, then
this means that r(2) returns 3. We call this measure Reciprocal Rank Similarity
(RRS for short). We can assume that RRS’s denominator

∑NR

i=1
1
i represents the

ideal value of a given model, where it is the CIR method in this paper. As the
ACP2P approaches the given model, the RRS value becomes higher. Thus, the
RRS can measure the similarity between ranks generated by the ACP2P and
by the CIR and returns a higher score the smaller r(i) (1 ≤ i ≤ NR) is, i.e.,
the higher the rank. For example, if a user wants to find 3 documents relevant
to his/her query and we suppose the top 3 ranked documents’ rank returned
by his/her agent to be 3, 5 and 1, then the RRS returns 1/3+1/5+1/1

1/1+1/2+1/3 = 0.84,
and the top 3 ranked documents’ rank to be 3, 5 and 2, then the RRS returns
1/3+1/5+1/2
1/1+1/2+1/3 = 0.56.

In the experiment, we use an average RRS: 1
Na

∑Na

i RRS(i), where Na is the
the number of all IR agents and RRS(i) is the RRS of the ith IR agent.

3.3 Similarity Measure for Detecting Target Agent

In order to find NR target agents to be sent a query, we calculate Score(query,
t agent), which returns the similarity value between query query and target
agent t agent, with equation (2); Score(query, t agent) becomes higher if t agent
sends a greater number of similar queries and returns more documents related
to query.

Score(query, t agent) =
k∑

i=1

cos(query, qhdi)

+
m∑

i=1

(cos(query, qhsai) + ϕ(i))

+max1≤i≤nSimd(query, doci) (2)

ϕ(i) =

⎧⎨
⎩

δ if qhsai is a query directly sent by
an other IR agent.

0 otherwise

In equation (2), query consists of w1, ..., wm, and wi (1 ≤ i ≤ m) is a term in
query. query is the term vector whose element is the frequency of occurrence
of the term in query. qhd and qhsa represent a query in a record of Q/RDH
and Q/SAH, respectively. The first term

∑k
i=1 cos(query, qhdi) returns the to-

tal score of the similarities between query and each of k number of queries sent

ACP2P: Agent-Community-Based Peer-to-Peer Information Retrieval 153

to t agent. The second term
∑m

i=1(cos(query, qhsai) + ϕ(i)) represents the
score between query and qhsai, which is the i th of m queries sent by t agent
in Q/SAH. ϕ(i) is a weight to consider the importance of ‘direct sending of a
query’. If qhsai is sent directly by t agent, δ is added to the score. In order
to decide the value of ϕ, we performed a simple pre-experiment that compared
ϕ = 0 with ϕ = 0.1. Since the result of ϕ = 0.1 was better than that of ϕ = 0, we
employed ϕ = 0.1. The last term max1≤i≤nSimd(query, doci) is the maximum
score of similarity between query and each of n documents originally created
by the user of t agent or just returned by t agent. Simd(query, doc) represents
the similarity between query and the content of retrieved document doc. It is
calculated with a more simplified of version of BM25, in which dl

avdl in equation
(1) is set to 1, and N is the total number of documents a query-sender IR
agent has. After calculating Score(query, t agent) for each IR agent t agent in
the retrieved document content file and two histories: Q/RDH and Q/SAH, NR

target agents will be selected in the descending order of Score(query, t agent),
which should be greater than 0. Whenever NR agents are not found, a query-
sender IR agent asks a portal agent to multicast a query to all the other IR
agents. If a target IR agent finds information relevant to query from its original
or retrieved document content files with Simd in equation (2), it returns a ’Yes’
message, otherwise a ’No’ message. If the similarity value between a document
and a query that was returned by Simd is greater than some threshold value (0
for the experiments), the document will be judged relevant, otherwise irrelevant.

3.4 Experimental Results

First we compare the change of the average number of messages exchanged by
each IR agent for every query input. For the comparison, we use 3 different
request numbers: NR=3, 10 and 20. The results are shown in Fig.5. In the figure
the vertical axis is the average number of messages and the horizontal axis is the
number of queries sent by each IR agent. The left side in the figure shows the
results of using QL=1 and the right side shows those of using QL=2.

The results show that the average number of messages received by each IR
agent is, except for MulCst, reduced for every query input. In particular, when
using QL=2, the number of received messages decreases more quickly than for
QL=1, and almost converges at the third query input because there is a larger
number of identical words in QL=2 queries than those of QL=1, and conse-
quently the words in QL=2 queries are more frequently found in two histories
and retrieved document files than is the case for QL=1. Furthermore we can see
that the graph of the number of messages in woQ/SAH approaches more closely
to that in MulCst than that for wQ/SAH, as NR increases. Thus we can say
that Q/SAH history is quite useful for finding target agents related to queries, in
particular when a user uses a greater number of different queries which include
fewer identical words.

Next we compare the RRS values of the three methods under the same condi-
tions as in the previous experiment. The results are shown in Fig.6. In the figure
the vertical axis is the average RRS and the horizontal axis is the number of

154 T. Mine, A. Kogo, and M. Amamiya

NR = 3, QL = 1

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

The number of queries sent by each IR Agent

A
v

e
r
a
g

e

n

u
m

b
e
r

o

f

m

e
s
s
a
g

e
s

r
e
c
e
i
v

e
d

b

y

e
a
c
h

I
R

A

wQ/SAH

woQ/SAH

MulCst

NR = 3, QL = 2

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

The number of queries sent by each IR Agent

A
v

e
r
a
g

e

n

u
m

b
e
r

o

f

m

e
s
s
a
g

e
s

r
e
c
e
i
v

e
d

b

y

e
a
c
h

I
R

A

wQ/SAH

woQ/SAH

MulCst

NR = 10, QL = 1

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

The number of queries sent by each IR Agent

A
v

e
r
a
g

e

n

u
m

b
e
r

o

f

m

e
s
s
a
g

e
s

r
e
c
e
i
v

e
d

b

y

e
a
c
h

I
R

A

wQ/SAH

woQ/SAH

MulCst

NR = 10, QL = 2

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

The number of queries sent by each IR Agent

A
v

e
r
a
g

e

n

u
m

b
e
r

o

f

m

e
s
s
a
g

e
s

r
e
c
e
i
v

e
d

b

y

e
a
c
h

I
R

A

wQ/SAH

woQ/SAH

MulCst

NR = 20, QL = 1

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

The number of queries sent by each IR Agent

A
v

e
r
a
g

e

n

u
m

b
e
r

o
f

m

e
s
s
a
g

e
s

r
e
c
e
i
v

e
d

b

y

e
a
c
h

I
R

A

wQ/SAH

woQ/SAH

MulCst

NR = 20, QL = 2

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

The number of queries sent by each IR Agent

A
v

e
r
a
g

e

n

u
m

b
e
r

o

f

m

e
s
s
a
g

e
s

r
e
c
e
i
v

e
d

b

y

e
a
c
h

I
R

A

wQ/SAH

woQ/SAH

MulCst

Fig. 5. The comparison of average number of messages received by each IR agent for
every query input using 3 diifferent NR values: NR=3 (TOP), NR=10 (MID) and
NR=20 (BTM). The query belongs to either QL=1 (left) or QL=2 (right).

queries sent by each IR agent. As the value of NR increases, the RRS value also
increases and the curve of the graphs becomes flatter. We can see that the RRS
value of MulCst increases as the number of queries sent increases. Considering
this phenomenon, we surmise that original documents assigned to IR agents will
gradually be spread over the community through the document retrieval process
of each IR agent. Thus even though a portal agent selects target agents in the
order their ’Yes’ messages are received, the probability that higher weighted doc-
uments will be returned rises. For the same reason, since the RRS value of the
MulCst increases as NR increases, the difference of the three methods decreases.
When using QL=1, the wQ/SAH almost achieves higher retrieval accuracy than
the other two methods, although the RRS value is unfortunately not so high
because the records stored in the content files and the two histories are originally

ACP2P: Agent-Community-Based Peer-to-Peer Information Retrieval 155

NR = 3, QL = 1

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

1 2 3 4 5 6 7 8 9 10

The number of queries sent by each IR Agent

A
v
e
r
a
g

e

R

e
c
i
p

r
o

c
a
l

R

a
n

k

S
i
m

i
l
a
r
i
t
y

wQ/SAH

woQ/SAH

MulCst

NR = 3, QL = 2

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

1 2 3 4 5 6 7 8 9 10

The number of queries sent by each IR Agent

A
v

e
r
a
g

e

R

e
c
i
p
r
o

c
a
l

R

a
n

k

S
i
m

i
l
a
r
i
t
y

wQ/SAH

woQ/SAH

MulCst

NR = 10, QL = 1

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

1 2 3 4 5 6 7 8 9 10

The number of queries sent by each IR Agent

A
v
e
r
a
g

e

R

e
c
i
p

r
o

c
a
l

R

a
n

k

S
i
m

i
l
a
r
i
t
y

wQ/SAH

woQ/SAH

MulCst

NR = 10, QL = 2

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

1 2 3 4 5 6 7 8 9 10

The number of queries sent by each IR Agent

A
v
e
r
a
g

e

R

e
c
i
p

r
o

c
a
l

R

a
n

k

S
i
m

i
l
a
r
i
t
y wQ/SAH

woQ/SAH

MulCst

NR = 20, QL = 1

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

1 2 3 4 5 6 7 8 9 10

The number of queries sent by each IR Agent

A
v
e
r
a
g

e

R

e
c
i
p

r
o

c
a
l

R

a
n

k

S
i
m

i
l
a
r
i
t
y

wQ/SAH

woQ/SAH

MulCst

NR = 20, QL = 2

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

1 2 3 4 5 6 7 8 9 10

The number of queries sent by each IR Agent

A
v
e
r
a
g

e

R

e
c
i
p

r
o

c
a
l

R

a
n

k

S
i
m

i
l
a
r
i
t
y wQ/SAH

woQ/SAH

MulCst

Fig. 6. The comparison of average reciprocal rank similarity (RRS) of each IR agent
for every query input using 3 diifferent NR values : NR=3 (TOP), NR=10 (MID) and
NR=20 (BTM). The query belongs to either QL=1 (left) or QL=2 (right).

acquired by a portal agent using the query multicasting technique and its RRS
value is not so high. However, when using QL=2, all three methods identically
achieve high RRS scores at both NR=10 and 20.

4 Related Work

There is lots of work related to the topics considered in this paper. Distributed
Information Retrieval selects some IR systems to send a query, aggregates the
results returned by the selected IR systems, and presents them to a user. Be-
fore selecting the IR systems to be sent a query, the resource description of
each IR system is often created [15]. In the ACP2P method, Q/RDH incre-
mentally creates an effect similar to the resource description. Freenet [8] and
Chord [7] are carried out in a pure P2P computing architecture. Freenet provides

156 T. Mine, A. Kogo, and M. Amamiya

information-sharing and information-finding functions among anonymously dis-
tributed nodes. Although Chord does not provide anonymity of nodes, it has an
efficient protocol for looking up nodes with Distributed Hash Tables. Their node
searching strategies are conducted according to keywords attached to the infor-
mation of the nodes. Thus users need to know the keywords of the information
they want to search for. On the other hand, since the ACP2P method can make
use of the content information of documents and two histories: Q/RDH and
Q/SAH, it allows the users to perform a more flexible search for target agents
with relevant information.

Lu and Callan[19] and Bawa et al.[20] shows that using content information in
P2P networks for query routing can greatly reduce average number of query mes-
sages per query, and get higher precision[19] and higher recall[20]. Their methods
first collect resource descriptions from all peers and classify them into some de-
cided number of clusters, then, have hubs or super-peers learn their neighbors’
resource descriptions for query routing. Because they assume cooperative envi-
ronments, it is not unknown whether their methods work in the uncooperative
environments where collecting resource descriptions from every peer is not pos-
sible and only the information such as query and retrieved document histories
achieved through the document retrieval process is available.

Routing Indices (RIs)[16] are local routing indices that nodes use so that
they can forward queries to neighbors that are more likely to have answers.
The RI stores information concerning which neighbors have what topics of doc-
uments, and thus gives a “direction” towards the document, rather than its
actual location[16]. On the other hand, the ACP2P method directly searches
for target agents with relevant information, using retrieved documents and two
histories. In particular, Q/SAH provides similar effects to link analysis like the
PageRank[17] or HITs algorithm[18], and can be expected to make a natural
collaborative filtering effect emerge because users want to send a query again to
the peers that can return results which satisfy them, and vice versa. However,
query forwarding like RIs would be able to help the ACP2P search for more
relevant information. NeuroGrid[21] is an adaptive decentralized search system
which supports distributed search by forwarding queries based on the contents
of each network node, and supports a learning mechanism that dynamically ad-
justs metadata describing the contents of nodes and the files that make up those
contents, using users’ positive and negative feedback. However, to our knowl-
edge, there is no discussion of the accuracy of NeuroGrid, and it does not use a
history like Q/SAH of the ACP2P.

5 Conclusions and Future Work

We presented some mathematical aspects of the ACP2P method and discussed
the experimental results that illustrate its validity. To do the experiments, we im-
plemented the method with Multi-Agent System Kodama. We conducted several
experiments to show whether or not two histories helped to reduce communi-
cation loads between agents in searching for information relevant to a query,

ACP2P: Agent-Community-Based Peer-to-Peer Information Retrieval 157

and whether or not Q/SAH helped in looking up new information sources. The
experimental results showed that the two histories are quite useful for looking
up new information source and for reducing communication loads, and have
a higher accuracy in retrieving documents than a simple method employing a
multicast technique. Although the RRS value of the ACP2P method (wQ/SAH
and woQ/SAH) for the conventional probabilistic IR method using a central-
ized indexing database, which is constructed from all documents collected from
every peer, i.e., every agent in the community, was not so high, it is because
the records stored in the content files and two histories were originally based on
results selected in the order they were received by a portal agent. Therefore if
we improve the way a portal agent selects the results, for example, make it wait
for a greater number of results than NR and select NR of them in order of their
weighting score, we will probably be able to achieve a higher similarity, although
this method might require more time than the current method. Another method
is to employ query routing before asking a portal agent to multicast the query,
that is, to let an IR agent ask target IR agents to forward a query to the IR
agents which are relevant to the query and are stored in the two histories of the
target IR agents.

We are currently continuing experiments to achieve results with more than
one hierarchical agent community, and with dynamic community environments
which agents freely join and leave, and where agents update their contents so
that we can simulate more realistic environments and evaluate the scalability of
the ACP2P method. Furthermore, we are investigating how we can make use
of user feedback embedded into the results in order to reflect it in ranking of
retrieved documents to achieve a higher retrieval accuracy according to some
measure specific to the user. We will report these results in the near future.

Acknowledgment

This research was partly supported by the Grant-in-Aid for Scientific Research
(C) (16500082) from the JSPS and the SCOPE-C (052310008) from the MIC,
Japan.

References

1. Mine, T., Matsuno, D., Takaki, K., Amamiya, M.: Agent community based peer-
to-peer information retrieval. In: Proc. of Third Int. Joint Conf. on Autonomous
Agents and Multi Agent Systems (AAMAS 2004). (2004) 1484–1485

2. Mine, T., Matsuno, D., Kogo, A., Amamiya, M.: ACP2P : Agent Community based
Peer-to-Peer Information Retrieval. In: Proc. of Third Int. Workshop on Agents
and Peer-to-Peer Computing (AP2PC 2004). (2004) 50–61

3. Lang, K.: NewsWeeder: learning to filter netnews. In: Proceedings of the 12th
International Conference on Machine Learning, Morgan Kaufmann publishers Inc.:
San Mateo, CA, USA (1995) 331–339

4. Schafer, J.B., Konstan, J.A., Riedi, J.: Recommender systems in e-commerce. In:
Proceedings of the 1st ACM Conference on Electronic Commerce. (1999) 158–166

158 T. Mine, A. Kogo, and M. Amamiya

5. Yimam-Seid, D., Kobsa, A.: Expert finding systems for organizations: Problem and
domain analysis and the demoir approach. Journal of Organizational Computing
and Electronic Commerce 13 (2003) 1–24

6. Good, N., Schafer, J.B., Konstan, J.A., Borchers, A., Sarwar, B.M., Herlocker,
J.L., Riedl, J.: Combining collaborative filtering with personal agents for better
recommendations. In: AAAI/IAAI. (1999) 439–446

7. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for
computer communications. (2001) 149–160

8. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous
information storage and retrieval system. Designing Privacy Enhancing Technolo-
gies: International Workshop on Design Issues in Anonymity and Unobservability,
http://www.doc.ic.ac.uk/˜twh1/academic/ (2001)

9. v6.0, G.P.D.: http://rfc-gnutella.sourceforge.net/ (2003)
10. Napster: http://www.napster.com/ (2000)
11. Mine, T., Matsuno, D., Kogo, A., Amamiya, M.: Design and implementation of

agent community based peer-to-peer information retrieval method. In: Proc. of
Eighth Int. Workshop CIA-2004 on Cooperative Information Agents (CIA 2004),
LNAI 3191. (2004) 31–46

12. Zhong, G., Amamiya, S., Takahashi, K., Mine, T., Amamiya, M.: The design and
application of kodama system. IEICE Transactions INF.& SYST. E85-D (2002)
637–646

13. Yahoo: http://www.yahoo.co.jp/ (2003)
14. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M.:

Okapi/keenbow at trec-8. In: NIST Special Publication 500-246: The Eighth Text
REtrieval Conference (TREC-8). (1999) 151–162

15. Callan, J., Connell, M.: Query-based sampling of text databases. ACM Transac-
tions on Information Systems 19 (2001) 97–130

16. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: the
28th International Conference on Distributed Computing Systems. (2002)

17. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
In: Proc. of 7th International World Wide Web Conference:WWW7 Conference.
(1998)

18. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM 46 (1999) 604–632

19. Lu, J., Callan, J.: Content-based retrieval in hybrid peer-to-peer networks. In:
Proceedings of the twelfth international conference on Information and knowledge
management. (2003) 199–206

20. Bawa, M., Manku, G.S., Raghavan, P.: Sets: search enhanced by topic segmenta-
tion. In: Proceedings of the 26th annual international ACM SIGIR conference on
Research and development in informaion retrieval. (2003) 306 – 313

21. Joseph, S.: Neurogrid: Semantically routing queries in peer-to-peer networks. In:
the International Workshop on Peer-to-Peer Computing (co-located with Network-
ing 2002), http://www.neurogrid.net/php/publications.php. (2002)

A Peer Ubiquitous Multi-agent Framework
for Providing Nomadic Users
with Adapted Information

Angela Carrillo Ramos, Jérôme Gensel,
Marlène Villanova-Oliver, and Hervé Martin

Laboratory LSR – IMAG. B.P. 72
38402 Saint Martin d’Hères Cedex, France

{carrillo, gensel, villanov, martin}@imag.fr

Abstract. In this paper, we describe how PUMAS, a framework based
on Ubiquitous Agents for accessing Web Information Systems (WIS)
through Mobile Devices (MD) can help to provide nomadic users with
relevant and adapted information. Using PUMAS, the information de-
livered to a nomadic user (whose location changes) is adapted according
to, on the one hand, her/his preferences, intentions and history in the
system and, on the other hand, the limited capacities of her/his MD. We
describe the extension we propose for handling adaptation in PUMAS.
We also describe different scenarios which illustrate the way PUMAS
works, especially when a query is processed.

1 Introduction

Shizuka et al. [1] define Peer to Peer (P2P) systems as systems characterized by a
direct communication between the peers with no communication needed through
a specific server, and by the autonomy a peer gets for accomplishing some as-
signed tasks. These systems are highly dynamic in that peers join or leave the
system. Shizuka et al. consider that P2P computing is one of the potential com-
municative architectures and technologies for supporting ubiquitous/pervasive
computing.

During the last decade, access to Web Information Systems (WIS) has evolved
a lot due to numerous factors: the inherent mobility of nomadic user, the technical
advances in Mobile Device (MD, e.g. PDA, phones, laptop), the need to cope with
some of their intrinsically limited capacities (e.g., size of screen, memory, hard
disk) and the multimedia nature of exchangeddata. Nowadays,Mobile Devices can
be used for accessing distant WIS but also for storing small amount of information
for (simple) WIS or applications. A WIS which executes on MDs could provide
services as accessing, searching and storing resources (files) inside it.

Having to face the reduced capacities of MDs, WIS designers must use mech-
anisms and architectures in order to efficiently store, retrieve and deliver data
using these MDs. The underlying challenge is to provide WIS users with useful
information based on an intelligent search and a suitable display of the deliv-
ered information. In order to reach this goal, Multi-Agent Systems (MAS) are

Z. Despotovic, S. Joseph, and C. Sartori (Eds.): AP2PC 2005, LNAI 4118, pp. 159–172, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

160 A. Carrillo Ramos et al.

an interesting approach. The W3C [2] defines an agent as ”a concrete piece of
software or hardware that sends and receives messages”. These messages can be
used for accessing a WIS and for exchanging information. Agents can be ex-
ecuted on the MD and/or migrate through the net, searching for information
on different servers (or MDs) in order to satisfy the user’s queries. This is the
underlying idea of the Mobile Agent concept [3].

Many technical and functional aspects have to be considered when designing
a WIS accessed through MDs, especially when addressing the issue of adapting
the delivered information to the nomadic user [4][5][6][7]. In a previous work [8],
we have defined PUMAS, a framework for retrieving information distributed
among several WIS and/or MDs from different types of MDs. The architecture
of PUMAS is composed of four MAS (one Connection MAS, one Communication
MAS, one Information MAS and one Adaptation MAS) each one encompassing
several ubiquitous agents which cooperate in order to achieve the different tasks
handled by PUMAS (MD connection/disconnection, information storage and
retrieval, etc.). In PUMAS, data representation, agent roles and rules for con-
trolling their behaviors and data exchange rely on XML files. In this paper, we
focus on the Adaptation MAS whose ubiquitous agents are in charge of perform-
ing adaptation. Through PUMAS, our final objective is to build and propose
a framework which is, beyond the management of accesses to WIS using MDs,
also in charge of performing an adaptation of the information according to the
user’s profile, the technical features of her/his MD and the contextual features.

For adaptation purpose, in PUMAS, the emphasis is particularly put on her/his
location in her/his profile. Indeed a nomadic user may often change her/his loca-
tion, which, sometimes, can impact her/his information needs. PUMAS focuses
on location dependent queries defined by Thilliez et al. [6] as queries which are
evaluated according to the current physical location of the user (e.g. which are the
nearest stores to the user?). In order to detect the user’s location, it is possible to
use a GPS device or methods like the Signal Strength, the SNMP (Simple Network
Management Protocol) or the Local Access to the MAC (Media Access Control) ad-
dress of the access point, proposed by Nieto-Carvajal et al. in [4].

Regarding the adaptation to the reduced capacities of MD, one objective is
to anticipate the fact that some retrieved information can not be properly dis-
played (e.g. the MD can not support video). It is necessary to investigate such
situations at design time in order to decide which solution to adopt. For instance,
considering a query whose result contains video data, these should not be deliv-
ered if the user accesses the WIS through a PDA which does not have enough
resources to display them. In this case, the Negotiation vocabulary proposed by
Lemlouma [9] can be used for adaptation purpose. It allows describing the user’s
MD, considering the constraints in terms of software and hardware environments
and in terms of network.

This paper is structured as follows. We expose in section 2 the motivation for
using agents and P2P approach in PUMAS. Then, section 3 presents PUMAS
architecture. We describe more particularly the Adaptation MAS which extends
the previous version of our framework [8]. In section 4, we give some scenarios

A Peer Ubiquitous Multi-agent Framework 161

which show how PUMAS works from the connection of a MD to the processing
of a query. An example which illustrates our proposition is given in section 5. In
section 6, we present some related works before we conclude in section 7.

2 A Framework Based on Agents and the P2P Approach

The goal of our work is to provide any nomadic user who accesses a WIS through
a MD with the more relevant information according to her/his preferences, as
well as to her/his contextual characteristics and her/his MDs features. Our ap-
proach is based on the agent technology. In the remainder of the paper, we call
an Agent-Based Web Information System (ABWIS), a WIS developed using an
agent approach (and accessed by users through MDs).

Wooldridge et al. [7] have highlighted the flexible and autonomous problem-
solving behavior (autonomy and proactivity) of agents, the richness of an agents
interaction (communication features) and the complexity of the structure of an
agent system organization (sociality). An agent interacts with other agents or
with the user in order to achieve a common objective or, in order to achieve
its own objectives. An agent performs its actions while situated in a particular
environment (e.g., computational, physical, ubiquitous one) and it decides for
itself what actions it should perform at what time. These authors consider that
an agent can also be a stand-alone entity which can perform some task on the
user’s behalf. Rahwan et al. [5] recommend to use the agent technology in MD
applications: an agent which executes on the user’s MD can inform the systems
it accesses about its contextual information (i.e., time, place and tasks under
execution). In such an environment, the user’s context is dynamic, since users
may move from one place to another (location changes). These location changes
could produce changes in the tasks and information needs of the user. Conse-
quently, the agent has to reason about the user’s goals and the way they can be
achieved.

The applications running on the MD must allow users to consult data at
any time from any place. This is the underlying idea of the Ubiquitous Com-
puting (UC). The W3C [2] defines UC, as an emerging three-fold paradigm of
personal computing, characterized by: first, small, handheld, wireless comput-
ing devices. Second, the pervasiveness and the wireless nature of devices which
require network architectures that support automatic and ad hoc configuration.
Third, ubiquitous computing environment is characterized by a high distribu-
tion, heterogeneity, mobility and autonomy.

An agent performs its tasks independently from the server and other agents.
This is the foundation of P2P Systems. A P2P system can be Pure P2P or Hybrid
P2P [1]. In a Pure P2P system, every peer is able to directly connect to all other
peers and messages are sent without the mediation of a server. In a Hybrid P2P
system, a peer needs to connect to both an index server and other peers. In
this connection, some messages are passed via the server and other messages are
directly exchanged between the peers. PUMAS agents are organized in an Hybrid
P2P architecture where each agent can connect or disconnect willingly towards

162 A. Carrillo Ramos et al.

and from the system and cooperate with other peer agents and, communicate
directly with other agent(s) for performing individual or collective task(s). There
are agents which execute on MDs and they can communicate through the central
platform of PUMAS (this platform executes on a server).

Following the P2P approach, an ABWIS has to represent knowledge required
by each agent for accomplishing tasks associated with the different roles they can
play (client, server, moderator, coordinator, etc.). The work of Panti et al. [10] is
an example of a Peer Multi-Agent System. However, both the Agent and the P2P
approaches suffer from the lack of expressiveness of the data and services defi-
nition languages. The data distribution among the MDs, the distributed system
problems (e.g., heterogeneity, data consistency) and the changes in contextual
features of the nomadic user are not considered by these approaches.

We address these issues in our proposition. PUMAS (Peer Ubiquitous Multi-
Agent Systems) [8] is a framework built on the one hand, for designing, developing
and deploying ABWIS, and on the other hand, for providing the user with the
information (that could be distributed in MDs and/or servers) according to
her/his characteristics in the system and to the MD she/he uses. Each MD has
at least one agent which informs the system about the user’s location (using a
GPS device or other methods like the ones presented in [4]) and its connection
features (e.g., time, connection device, protocol). The agents of PUMAS can
retrieve information and have the ability to perform tasks (e.g. connections to
the system, communications with other agents, analysis of the queries, etc).
These agents can, on the one hand, migrate to different servers (or other MDs)
where WIS are executed in order to find the peer agent(s) that will help to
answer the queries or, on the other hand, they can use a central platform in
order to communicate with other peer agents. Users equipped with MDs can
use the PUMAS central platform in order to communicate together through
agents executed on their MDs, exchange information or support cooperative
work between agents when performing their assigned tasks. In the next section,
we describe PUMAS. Its architecture is described with a special emphasis on its
adaptation features.

3 The PUMAS Framework

In this section, we focus on the description of the Adaptation MAS which per-
forms the adaptation of the information for the user. We also present an overview
of the Connection, the Communication and the Information MAS.

3.1 Architecture Overview

The original architecture of PUMAS [8] is composed of three MAS:

– A Connection MAS which provides the mechanisms for facilitating the
connection from different types of MD to the system. It encompasses one
or several Mobile Device Agents (MDAs) and one Connection Controller
Agent (CCA).

A Peer Ubiquitous Multi-agent Framework 163

– A Communication MAS which ensures a transparent communication be-
tween the MDs and the system, and applies a Display Filter for displaying
the information to the user in an adapting way according to the constraints
of her/his MD. For this, it is helped by agents of the Adaptation MAS pre-
sented in section 3.2. The Communication MAS encompasses one Coordi-
nator Agent (CA), one MDProfile Agent (MDPA) and one or more Proxy
Agents (PAs).

– An Information MAS which receives the user’s query, redirects them to the
”right” Information System (the nearest Information System, the one which
can answer the user’s queries, the more consulted one), applies a Content
Filter (with the help of the Adaptation MAS agents) according to the user’s
profile in the system (preferences, history, intentions) and returns the re-
sults to the Communication MAS. The Information MAS encompasses one
Receptor/Provider Agent (R/PA), one Router Agent (RA) and one or more
ISAgents (ISAs).

Fig. 1. The PUMAS Architecture

The inherent mobility of the user and of the agents is supported by ubiquitous
mobile agents (the Mobile Device Agents in the Connection MAS and the IS-
Agents in the Information MAS) which can be transmitted through the network
to retrieve some needed information and which can communicate with other
agents for performing tasks. In PUMAS, the ubiquitous agents are organized
in a Hybrid P2P Architecture which copes with the following issues: security in
the applications (security problems inherent to the agent mobility), communi-
cation between agents in a point to point or in a broadcast way, management of
the agent’s status (e.g., connected, disconnected, killed, etc.) and of the services

164 A. Carrillo Ramos et al.

they provided. A more detailed description of the Connection, Communication
and Information MAS is exposed in [8]. The main contribution of this paper,
described in the next section, deals with the introduction of a new MAS which
supports the adaptation capabilities of PUMAS.

3.2 The PUMAS Adaptation MAS

The adaptation capabilities of PUMAS rely on a two step filter process which
aims at providing the user with adapted information (i.e. ”the right information
in the right place at the right time”) according to both the user and her/his
MD. First, the Content Filter allows selecting the more relevant information
according to the user’s profile defined in the system. Second, the Display Filter
applies to the results of the first filter and takes into account the characteristics
and technical constraints of the user’s MD.

We introduce a new MAS, called the Adaptation MAS, in the architecture
of PUMAS. Similarly to the three other MAS of PUMAS, the Adaptation MAS
is composed of some ubiquitous agents. The services and tasks of these agents
essentially consist in managing specific XML files which contain information
about the user and her/his MD. The agents of the Adaptation MAS also have
some knowledge (stored in Knowledge Bases) which allows selecting and filtering
the information for users. This knowledge is acquired by analyzing user’s previous
experiences in the system, like her/his last connections, queries, preferences, etc.
The Adaptation MAS agents communicate with the agents of the Connection,
the Communication and the Information MAS in order to provide them with
information about the user (explicitly extracted from the XML files or inferred
from their rules and knowledge), connection and communication features, MDs
characteristics, etc. The Adaptation MAS is composed of several UserAgents
(UA), one DisplayFilterAgent (DFA) and one ContentFilterAgent (CFA). These
agents execute on the central platform of PUMAS (see Fig. 1).

Each UserAgent (UA) manages a XML file (User Profile XML file) which con-
tains personal user’s characteristics (user ID, location, etc.) and her/his prefer-
ences (e.g., the user wants only video files). This file is obtained by means of the
Mobile Device Agent. There is only one UA which represents a user at the same
time. Since a user can access the system through several MDs, the UA commu-
nicates with the Mobile Device Agents and the Proxy Agents (which respectively
belong to the Connection and the Communication MAS) for analyzing and cen-
tralizing all the characteristics of the same user. The UA communicates with the
CFA for sending the User Profile XML file. When the CFA receives this file, it
stores this information as facts in its Knowledge Base (this agent stores a register
of user’s preferences). When the Receptor/Provider Agent (which belongs to the
Information MAS) asks the CFA for the user’s preferences, the latter sends it
the latest XML file received from the UA. If the UA did not send this file (e.g.,
there are only general user’s preferences valuable for all sessions), the CFA takes
into account for this user her/his preferences from previous sessions.

The DisplayFilterAgent (DFA) manages a Knowledge Base which contains
general information about the characteristics of different types of MDs (e.g.,

A Peer Ubiquitous Multi-agent Framework 165

format files supported) and acquired knowledge from previous connections (e.g.,
problems and capabilities of networks according to data transmissions). The
Connection Controller Agent (of the Connection MAS) communicates with the
DFA, asking for information about the characteristics of connection and/or prob-
lems (e.g., bandwidth capabilities, transmission speed). The MDProfile Agent
(of the Connection MAS) also communicates with the DFA, asking for the con-
straints and capabilities of a given type of MD.

The ContentFilterAgent (CFA) manages a Knowledge Base base which con-
tains the preferences, intentions and characteristics of the users. The CFA com-
municates user’s preferences to the Receptor/Provider Agent (which belongs to
the Information MAS). The Receptor/Provider Agent adds them to the user’s
queries and checks if the results are adapted according to this information.

The XML files managed by the agents of the Adaptation MAS have been
defined using the extensions introduced by Indulska et al. [11] to CC/PP [2].
These extensions include some user’s characteristics (e.g., her/his location, ap-
plication requirements, session features, etc.), together with the features of the
MD, providing this way a complete description of the user and her/his device.

The agents of the Connection, the Communication and the Information MAS
communicate with the Adaptation MAS agents for adding specific information
to the user’s queries and then to check the results provided by the Router Agent
which belongs to the Information MAS.

4 PUMAS Scenarios

In this section, we present some scenarios in order to show the interactions which
occur between PUMAS agents when a connection to an ABWIS is established,
when a query is submitted to the system and finally, when the system returns
the result for this query. In our proposition, interactions between agents rely
on the messages exchanges according to the Communication Acts presented by
Odell et al. in [12] (e.g., confirm, inform, propose, request, subscribe, propagate,
etc.).

4.1 Connection Scenario

When a user wants to connect to the system using her/his MD, the Mobile Device
Agent (MDA), which executes in the user’s MD, sends a ”propose” message
(connection proposition) to the Connection Controller Agent (CCA). If there is
no Proxy Agent (PA) for representing this MDA, the CCA creates one and it
sends a ”subscribe” message to the Coordinator Agent (CA) for subscribing this
PA to the system. The CA informs the MDProfile Agent of this subscription. The
CCA also sends to the MDA a ”confirms” message when the subscription process
is finished (see Fig. 2). When the MDA receives the confirmation message, a
UserAgent (UA) is created in the central platform of PUMAS in order to manage
the user’s profile. This profile is defined in the Current Session XML file and is
sent to the UserAgent by the Mobile Device Agents.

166 A. Carrillo Ramos et al.

Fig. 2. Connection Scenario of PUMAS

4.2 Sending an Information Query

When a user sends an information query Q (see Fig. 3), the Mobile Device Agent
(MDA) sends it to the Connection Controller Agent (CCA). If the user has estab-
lished in her/his preferences (defined in the User Profile XML file) that her/his
query Q depends on both her/his location and time of connection, the CCA adds
up to Q the information about the time of connection, the user’s location and
the characteristics of the user’s MD connection (these latter characteristics are
exchanged with the DisplayFilterAgent). This leads to the production of a new
query Q’ (in Fig. 3, Q’=Q + user’s Spatio-Temporal - ST - features). Otherwise,
the CCA only adds up to Q the characteristics of the user’s MD connection. The
Q’ is then sent to the Proxy Agent. The Q’ passes by the Coordinator Agent
and then by the MDProfile Agent. The latter adds up to Q’ some features re-
lated to the MD; these features are provided by the DisplayFilterAgent which
have previously learnt them from the previous queries or retrieved them from its
Knowledge Base. The new Q” query (in Fig. 3, Q”= Q’ + MD features) is sent
by the MDProfile Agent to the Receptor/Provider Agent (R/PA). The R/PA
adds up to Q” the specific user’s characteristics in the system by requesting the
ContentFilterAgent (In Fig. 3, Q”’=Q” + user’s preferences). The R/PA sends
Q”’ to the Router Agent which decides (according to the query, the system rules
and the fact in its Knowledge Base) which are the ISAgents able to answer. It
can send the query to a specific ISAgent or to several ISAgents (e.g., waiting for
the first to answer or different answers) or, it can divide the query in sub-queries
which are sent to one or several ISAgents. The scenario in Fig. 3, shows for in-
stance that Q”’ is divided into Q”’ −1.1, Q”’ −1.2, Q”’ −1.3 and Q”’ −1.4 which
are sent to the ISAgents executed on a server and different MDs.

When a user U1 has an information query for another user (U2), both equipped
with MDs, the query is propagated from the MDA executed on the U1’s MD to-
wards the Router Agent which redirects it to the MDA executed in the U2’s MD.
This U2’s MDA changes of role to become an ISAgent, i.e. the agent in charge of

A Peer Ubiquitous Multi-agent Framework 167

Fig. 3. Scenario of sending a query

answering the information query. This change of role is possible because a MDA
has the knowledge for managing the information stored in the MD on which it
executes and it has the capability of answering the information queries.

4.3 Receiving the Results of an Information Query

When the Router Agent receives all the results of the query from the ISAgents
(in Fig. 4, the Router Agent receives partial results R1.1, R1.2, R1.3 and R1.4

sent by the ISAgents which are executed on a server and different MDs), it an-
alyzes them before sending a message of ”confirms” or ”disconfirms” or ”not
understand” to the Receptor/Provider Agent (R/PA). This message includes the
results of the query (R). The R/PA checks if the results can satisfy the specific
characteristics of the user (in Fig. 4, R’ is the result of applying the Content
Filter to R according to the user’s preferences, intentions, history) and redirects
them to the MDProfile Agent. This agent checks if the results can be displayed
according to the MD features and it performs the first step of the Display Filter
(in Fig. 4, R” is produced by filtering R’ according to the MD features). Then,
R” is transmitted by the Coordinator Agent to the Proxy Agent and then to the
Connection Controller Agent. The latter performs the last step of the Display
Filter according to the technical features of the MD and to the user’s MD con-
nection characteristics (if the user is still connected, has changed of location, a
timeout has occurred, etc.). Thanks to the Content and the Display Filters, the
results of the query received by the Mobile Device Agent and displayed on the
user’s MD correspond to the more relevant information for the user.

It is worth noting that the scenario described above includes several results
checking steps which might appear useless since the scenario of a query sending
has already allowed to refine the query to take into account the user’s and
MD characteristics. However, this extra information added during the query

168 A. Carrillo Ramos et al.

Fig. 4. Scenario of receiving the results of a query

sending scenario might not be still valid at result delivery time. Notably, the
user’s characteristics (location change, preferences changes) and the connection
and communication means (bandwidth variation, different used MDs, network
problems) might have evolved and therefore might impact the results expected
by the user. The controls which are presented in the ”receiving the results of
an information query” scenario aim at eliminating some now possibly irrelevant
retrieved information. In the next section, we illustrate the process performed
by the agents of PUMAS using the example of a hospital WIS.

5 Example

Doctors equipped with MDs (e.g. PDA, cellular phone, etc.) access information
which can be distributed between several MDs and/or one or several WIS. They
can also receive information concerning their patients according to their loca-
tion, preferences, technical characteristics of their MDs and considerations about
their connection time (i.e., when visiting their patients, doctors with MDs can
consult information about their clinic history, tests, medicaments, etc). For this,
the application on her/his MD must consult the different IS of the hospital phar-
macy, patients, etc. Doctors could also communicate with other doctors (peers)
through their MD asking for a specific question (e.g. that can be answered only
by the last specialist who has examined this patient).

The Mobile Device Agent which executes on the doctor’s MD sends the doc-
tor’s queries (for instance, the query Q in Fig. 5). The queries are propagated
through PUMAS core: they are first transmitted through the Connection Con-
troller Agent (CCA). Let us suppose in our example that the system can identify
a patient and get information about her/him from the location of this patient
(e.g., room, floor, bed, etc.) and the current date. For this identification, the
information about the patient’s location can be directly entered by the doctor

A Peer Ubiquitous Multi-agent Framework 169

Fig. 5. Scenario of sending a query in the hospital example

or can be automatically got by means of a device located in her/his MD (e.g.,
GPS, bar-code reader, etc). The information about the current date can be got
from the system. The CCA creates a new query Q’ which contains Q and the
information about the current date and the patient’s location (In Fig. 5, Q’= Q +
current date and patient location). Then, the query is sent to the Communication
MAS agents (the Proxy Agent, the Coordinator Agent and the MDProfile Agent).
The MDProfile Agent can add up into the queries some information related to
the MD (e.g., doctor’s MD can not support images but only text files, then the
doctor asks for the results test, she/he only could get them in a text format
which is illustrated in Fig. 5 as follows : Q”= Q’ + to display only text). Then,
the MDProfile Agent sends the queries to the Receptor/Provider Agent (R/PA).
This agent can add up into the queries the preferences the doctor has previously
expressed (e.g., ”when asking for a blood test, the system must also provide me
with information about the patient’s diet”, ”I do prefer graphical results”, etc.,
in Fig. 5, Q”’= Q” + patient’s diet and blood tests). Finally, the query comes
to the Router Agent. This agent redirects the queries to the ISAgent located in
the IS(s) which manage(s) the information about the patients in the hospital.
All the queries follow the same path from the Mobile Device Agents towards
the Router Agent. If the doctor wants to know the last medicaments prescribed
to this patient, the Router Agent redirects the query to the ISAgent located
in the Pharmacy IS. If the query concerns another doctor (peer), the Router
Agent redirects the query to the ISAgent located in the peer’s MD. A doctor
can also ask for information about a specific patient to several of her/his peers.
In this case, the Router Agent could send the query in a broadcast way or it
could divide the query according to the receiver peer (e.g., queries relates to
the heart for the cardiologist) or the defined criteria in the User Profile XML
file (e.g., if the criterion is the location, the queries must only be redirected to
peers at the same or closed location of the sender). The retrieved information
is organized by the Router Agent (e.g., the latest prescribed medicaments, the

170 A. Carrillo Ramos et al.

peer’s answers about this patient, etc.) and it is returned to the doctor who
sent the query following the inverse path. The different agents checks the results
because, for instance, the doctor may have disconnected from the system (due
to network problems), and retaken her/his session in a new connection having
characteristics different from the previous ones: she/he could now consult the
system using another kind of MD which supports some graphical format (this
new preference can now be satisfied).

Through this example, we can observe the Hybrid P2P Architecture of PU-
MAS. The core of PUMAS centralizes the queries and it is in charge of applying
the Content and Display Filters for adapting the answers. The main peer charac-
teristics of PUMAS agents are: i) the agents have the autonomy of connecting to
and disconnecting from the system, and ii) a MD can ask for a communication
with a specific IS (executed on a server or on a MD) passing this information as a
parameter of the query; the Router Agent transmits the query to this specific IS
which exemplifies an agent to agent communication. This is for instance, the case
when doctors directly exchange information about a patient using their MDs.

Another advantage offered by PUMAS is that it helps a user who does not know
which specific IS to ask for information to find the more appropriate one(s). The
RouterAgent redirects thequery to the ”right” ISbymeans of an intelligent analysis
of the query and the help of the ISAgents which achieve an intelligent search inside
the different IS (pharmacy, clinical laboratory, patients, etc. in our example).

6 Related Works

We present here some agent-based architectures or frameworks for adapting in-
formation to users.

CONSORTS Architecture [13] is based on ubiquitous agents and designed
for a massive support of MDs. It detects the user’s location and defines the
user’s profile for adapting information to her/him. The CONSORTS architecture
proposes a mechanism for defining the relations that hold between agents (e.g.,
communication, hierarchy, role definition), with the purpose of satisfying user’s
requests. However, it does not consider the distribution of information between
MDs (which could improve response time) nor the user’s preferences.

The work of Gandon et al. [14] proposes a Semantic Web architecture for
context-awareness and privacy. This architecture supports the automated dis-
covery and access of a user’s personal resources subject to user-specified privacy
preferences. Service invocation rules along with services ontologies and services
profiles allow to identify the most relevant resources available to answer a query.
However, it does not take into account the fact that information which can an-
swer a query can be distributed between different sources.

PIA-System [15] is an agent-based personal information system for collecting,
filtering and integrating information at a common point, offering access to the
information by WWW, e-mail, SMS, MMS and J2ME clients. It combines push
and pull techniques in order to allow the user on the one hand, to search explicitly
for specific information and on the other hand, to be automatically informed

A Peer Ubiquitous Multi-agent Framework 171

about relevant information divided in slots according the activities performed
during different parts of the day (pre, work and recreation). However, PIA-
System only searches information in text format. It does not take into account the
adaptation of different kinds of media to different MDs, nor the user’s location.

7 Conclusion

In this paper, we have presented PUMAS, a framework based on agents and P2P
approach. Peers characteristics of PUMAS appear in the cooperation developed
by the agents in order to store and retrieve the information and in the possibility
that two users equipped with MDs have to communicate in a direct way through
the central platform offered by PUMAS. The architecture of PUMAS relies on
three Multi-Agents Systems (MAS) for Connection, Communication and Infor-
mation plus a transversal MAS dedicated to adaptation (the Adaptation MAS).
PUMAS also benefits from the P2P characteristics of a hybrid P2P architec-
ture: independence of the agents in connection, disconnection and reconnection
to the system, direct communication between the peers (using both the agent
identification and the central platform). PUMAS also provides a mechanism for
identification, authentication and knowledge of the peers of an agent. In conclu-
sion, PUMAS advantages are two-fold, the intelligent and adaptive information
search done by means of agents, especially, the Router Agent which chooses the
WIS or other MDs for routing the user’s queries and then for compiling the an-
swer(s). This search is intelligent because is based on the knowledge of the agent
(proper, acquired and inferred knowledge) and its capability of reasoning. This
search is also adaptive because it takes into account the nomadic user’s profile,
the characteristics of her/his MDs and the contextual features.

We are currently implementing and testing each MAS of PUMAS. Our fu-
ture work aims at defining an extension for the Agent Communication Language
(ACL) [16] which does not consider spatio-temporal features. To take into ac-
count these features in queries, we want to introduce primitives like query-when,
query-where, etc. We also aim at defining the mechanisms and strategies of the
Router Agent in order to achieve the Query Routing [17] process allowing to
propagate the query towards the ”right” IS and to compile the answers.

References

1. Shizuka, M., Ma, J., Lee, J., Miyoshi, Y., Takata, K.: A p2p ubiquitous system
for testing network programs. In: Proc of Embedded and Ubiquitous Computing
(EUC 2004)(Aizu-Wakamatsu, Japan, August 25-27, 2004). Volume 3207 of LNCS.,
Springer (2004) 1004–1013

2. W3C: OWL Web Ontology Language, Use Cases and Requirements
(http://www.w3.org/TR/webont-req/). (2005)

3. Lin, F., Liu, H.: Maspf: Searching the shortest communication path with the
guarantee of the message delivery between manager and mobile agent. In: Proc
of Embedded and Ubiquitous Computing (EUC 2004)(Aizu-Wakamatsu, Japan,
August 25-27, 2004). Volume 3207 of LNCS., Springer (2004) 755–764

172 A. Carrillo Ramos et al.

4. Nieto-Carvajal, I., Botia, J., Ruiz, P., Gomez-Skarmeta, A.: Implementation and
evaluation of a location-aware wireless multi-agent system. In: Proc of Embedded
and Ubiquitous Computing (EUC 2004)(Aizu-Wakamatsu, Japan, August 25-27,
2004). Volume 3207 of LNCS., Springer (2004) 528–537

5. Rahwan, T., Rahwan, T., Rahwan, I., Ashri, R.: Agent-based support for mobile
users using agentspeak(l). In: Proc of Agent-Oriented Information Systems, 5th
Int. Bi-Conference Workshop (AOIS 2003)(Melbourne, Australia, July 14, 2003 -
Chicago, USA, October 13, 2003). Volume 3030 of LNAI., Springer (2003) 45–60

6. Thilliez, M., Delot, T.: Evaluating location dependent queries using islands. In:
Proc of Symposium on Advanced Distributed Systems (ISSADS 2004)(Guadala-
jara, Mexico, January 25-30, 2004). Volume 3061 of LNCS., Springer (2004)
126–136

7. Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. The Knowl-
edge Engineering Review 10 (2) (1995) 115–152

8. Carrillo Ramos, A., Gensel, J., Villanova-Oliver, M., Martin, H.: Pumas: a frame-
work based on ubiquitous agents for accessing web information systems through
mobile devices. In: Proc. of the 20th Annual ACM Symposium on Applied Com-
puting (SAC2005)(Santa Fe, USA, March 13-17, 2005), ACM Press, New York,
NY (2005) 1003–1008

9. Lemlouma, T.: Architecture de Ngociation et dAdaptation de Services Multimdia
dans des Environnements Htrognes. PhD thesis, Institut National Polytechnique
de Grenoble, Grenoble (2004) (in French).

10. Panti, M., Penserini, L., Spalazzi, L.: A multi-agent system based on the p2p model
to information integration. In: Proc of 1st Int .joint Conferences on Autonomous
Agents and Multi-Agent Systems (AAMAS 2002)(Bologna, Italy,July 16, 2002),
ACM Press, New York, NY (2002) 1288–1289

11. Indulska, J., Robinson, R., Rakotonirainy, A., Henricksen, K.: Experiences in using
cc/pp in context-aware systems. In: Proc of 4th Int. Conf. on Mobile Data Man-
agement (MDM 2003)(Melbourne, Australia, January 21-24, 2003). Volume 2574
of LNCS., Springer (2003) 247–261

12. Odell, J., Van Dyke Parunak, H., Bauer, B.: Representing agent interaction proto-
cols in uml. In: Proc of Agent Oriented Software Engineering (AOSE 2000)(Lim-
erick, Ireland, June 10, 2000). Volume 1957 of LNCS., Springer (2000) 121–140

13. Kurumatani, K.: Mass user support by social coordination among citizen in a
real environment. In: Proc. of Multi-Agent for Mass User Support. International
Workshop (MAMUS 2003)(Acapulco, Mexico, August 10, 2003). Volume 3012 of
LNAI., Springer (2003) 1–16

14. Gandon, F., Sadeh, N.: Semantic web technologies to reconcile privacy and context
awareness. Journal of Web Semantics 1 (3) (2004)
http://www.websemanticsjournal.org/ps/pub/2004-17 (Last Access: March 2005).

15. Albayrak, S., Wollny, S., Varone, N., Lommatzsch, A., Milosevic, D.: Agent tech-
nology for personalized information filtering: The pia-system. In: Proc. of the 20th
Annual ACM Symposium on Applied (SAC 2005)(Santa Fe, USA, March 13-17,
2005), ACM Press, New York, NY (2005) 54–59

16. FIPA: ACL Message Structure Specification
(http://www.fipa.org/specs/fipa00061/SC00061G.html). (2005)

17. Xu, J., Lim, E., Ng, W.: Cluster-based database selection techniques for routing
bibliographic queries. In: Proc of 10th Int. Conf. and Workshop on Database and
Expert Systems Applications (DEXA 99)(Florence, Italy, August 30 - September
3, 1999). Volume 1677 of LNCS., Springer (1999) 100–109

Author Index

Amamiya, Makoto 145

Boutaba, Raouf 58

Carrillo Ramos, Angela 159

Darlagiannis, Vasilios 81

Gensel, Jérôme 159

Heckmann, Oliver 81
Hong, Sung Je 30

Iraqi, Youssef 58

Kim, Jong 30
Knežević, Predrag 70
Kogo, Akihiro 145
König-Ries, Birgitta 16
Küngas, Peep 106
Kwon, O-Hoon 30

Lee, So Young 30
Li, Kai 120
Liebau, Nicolas 81

Martin, Hervé 159
Matskin, Mihhail 106
Mauthe, Andreas 81
Mekouar, Loubna 58

Mine, Tsunenori 145
Morino, Eiichi 44
Murai, Jun 44

Obreiter, Philipp 16

Papaioannou, Thanasis G. 1
Patkos, Theodore 94
Plexousakis, Dimitris 94
Purvis, Martin 132
Purvis, Maryam 132

Risse, Thomas 70

Saito, Kenji 44
Stamoulis, George D. 1
Steinmetz, Ralf 81

Tang, Li 120

Villanova-Oliver, Marlène 159

Wang, Hao 120
Wang, Mengqiu 132
Wolf, Heiko 132
Wombacher, Andreas 70

Zhou, Jin 120
Zhou, Zhizhi 120

	Frontmatter
	Trust and Reputation
	Optimizing an Incentives' Mechanism for Truthful Feedback in Virtual Communities
	A New View on Normativeness in Distributed Reputation Systems
	A Trust Management Scheme in Structured P2P Systems
	Incentive-Compatibility in a Distributed Autonomous Currency System
	Handling Free Riders in Peer-to-Peer Systems

	P2P Infrastructure
	Highly Available DHTs: Keeping Data Consistency After Updates
	Caching Indices for Efficient Lookup in Structured Overlay Networks

	Semantic Infrastructure
	A Semantic Marketplace of Negotiating Agents
	Semantic Web Service Composition Through a P2P-Based Multi-agent Environment

	Community and Mobile Applications
	A Low-Latency Peer-to-Peer Approach for Massively Multiplayer Games
	An Agent-Based Collaborative Framework for Mobile P2P Applications
	ACP2P: Agent-Community-Based Peer-to-Peer Information Retrieval -- An Evaluation
	A Peer Ubiquitous Multi-agent Framework for Providing Nomadic Users with Adapted Information

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

